Hostname: page-component-76fb5796d-zzh7m Total loading time: 0 Render date: 2024-04-26T15:07:52.776Z Has data issue: false hasContentIssue false

The Effect of Hydrogen Treatment on Electrical Properties of AIGaAsSb

Published online by Cambridge University Press:  03 September 2012

A. Y. Polyakov
Affiliation:
ECE Department Carnegie Mellon University, Pittsburgh, PA 15213–3890, USA
M. Stam
Affiliation:
ECE Department Carnegie Mellon University, Pittsburgh, PA 15213–3890, USA
A. G. Milnes
Affiliation:
ECE Department Carnegie Mellon University, Pittsburgh, PA 15213–3890, USA
R. G. Wilson
Affiliation:
Hughes Research Laboratories, 250MS RL56, 3011 Malibu Canyon Rd., Malibu, CA 90265, USA
A. E. Bochkarev
Affiliation:
Institute of Rare Metals, B. Tolmachevsky, 5, Moscow 109017, Russia
P. Rai-Choudhury
Affiliation:
Solid State Measurements, Inc., 110 Technology Drive, Pittsburgh, PA 15275, USA
R. J. Hillard
Affiliation:
Solid State Measurements, Inc., 110 Technology Drive, Pittsburgh, PA 15275, USA
S. J. Pearton
Affiliation:
AT&T Bell Laboratories, 600 Mountain Ave., Murray Hill, NJ 07974–2070, USA
Get access

Abstract

The effect of hydrogen treatment at 200°C on the concentration of electrically active defects in LPE grown AIGaAsSb is reported. In n-type layers the electrical properties are shown to be dominated by DX-like deep donors of three different types all of which are strongly passivated by the hydrogen treatment as evidenced by C-V. DLTS C-T and spreading resistance measurements. In p-type layers intrinsic acceptors of defect origin are also passivated by hydrogen. Deuterium profiles in both n- and p-type layers show characteristic plateaus indicative of formation of neutral compexes between hydrogen and dopants. Hydrogen treatment also leads to decrease of the Au/n-AIGaAsSb Schottky barrier height from 1.3 to 0.85 eV.

Type
Research Article
Copyright
Copyright © Materials Research Society 1992

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Pearton, S. J., Corbett, J. W. and Shi, T. S., Appl. Phys. A43, 153 (1987)Google Scholar
2. Chevallier, J. and Aucouturier, M., Ann. Rev. Mater. Sci., 18, 219 (1988)Google Scholar
3. Polyakov, A. Y., Pakhomov, A. V., Tishkin, M. V. and Omeljanovsky, E. M. in Semi-Insulating lll-V Materials, eds. Milnes, A. G. and Miner, C. J. (Adam Hilger, Bristol/Philadelphia/New York, 1990), p. 247 Google Scholar
4. Chevallier, J. and Pajot, B., Proceedings of the 16th International Conference on Defects in Semiconductors, Mat. Sci. For., 83–87, 539 (1991)Google Scholar
5. Caneau, C, Srivastava, A. K., Dentai, A. G., Zyskind, J. L and Pollack, M. A., Electron. Lett., 21, 815 (1985)Google Scholar
6. Bochkarev, A. E., Dolginov, L. M., Drakin, A. E., Druzhinina, L. V., Eliseev, P. G. and Sverdlov, B. N., Sov. J. Quantum Electr., 15, 869 (1985)CrossRefGoogle Scholar
7. Eglash, S. J., Choi, N. K. and Turner, G. W., in Molecular Beam Epitaxy, eds. Tu, C. W. and Harris, J. S. Jr, (North-Holland, the Nethelands, 1991) p. 669 Google Scholar
8. Polyakov, A. Y., Stam, M., Milnes, A. G., Bochkarev, A. E. and Pearton, S. J., submitted to J. Appl. Phys., 1992 Google Scholar
9. Polyakov, A. Y., Stam, M., Milnes, A. G., Bochkarev, A. E. and Pearton, S. J., submitted to Semicond. Sci. and Technol., 1992 Google Scholar
10. Hillard, R. J., Berkowitz, H. L, Mazur, R. G. and Rai-Choudhury, P., Solid State Technology, 32, 119 (1989)Google Scholar
11. Hillard, R. J., Berkowitz, H. L., Heddleson, J. M., Mazur, R. G. and Rai-Choudhury, P., III-V Review, 3, N 45 (1990)Google Scholar
12. Pearton, S. J., Dautremont-Smith, W. C. and Chevallier, J., J. Appl. Phys., 59, 2821, (1986)Google Scholar
13. Zavada, J. M., Jenkisson, N. A., Sarkis, R. G. and Wilson, R. G., J. Appl. Phys., 58, 3731 (1985)Google Scholar
14. Adachi, S., J. Appl. Phys., 61, 4869 (1987)Google Scholar
15. Mooney, P. M., J. Appl. Phys., 67, R1 (1990)Google Scholar
16. Chong, T. C., Hillard, R. J., Heddleson, J. M., Rai-Choudhury, P., Moore, W. T. and Spring-Thorpe, A. J., in Proceedings of the First Int. Workshop on the Measurement of Ultra-Shallow Doping Profiles in Semicond., Research Triangle Park, N. C., March 1992.Google Scholar
17. Sze, S. M., Physics of Semiconductor Devices, 2nd Edition (John Wiley and Sons, New York, 1981)Google Scholar
18. Polyakov, A. Y., Stam, M., Milnes, A. G. and Schlesinger, T. E., to be published in Material Science and Engineering, 1992 Google Scholar
19. Baxter, R. D., Bate, R. T. and Reid, F. J., J. Phys. Chem. Solids, 26, 41 (1965)Google Scholar
20. Spicer, W. E., Lilliental-Weber, Z., Weber, E., Neuman, N., Kendelewitcz, T., Cao, R., McCants, C., Manowald, P., Miyano, K. and Lindau, I., J. Vac. Sci. Technol., B6, 1245, (1988)Google Scholar