Hostname: page-component-848d4c4894-xm8r8 Total loading time: 0 Render date: 2024-06-19T16:32:28.909Z Has data issue: false hasContentIssue false

Effect of High Temperature Single and Multiple AlN Intermediate Layers on N-polar and Ga-polar GaN Grown by Molecular Beam Epitaxy

Published online by Cambridge University Press:  21 March 2011

F. Fedler
Affiliation:
Laboratorium für Informationstechnologie, Universität Hannover, GERMANY
J. Stemmer
Affiliation:
Laboratorium für Informationstechnologie, Universität Hannover, GERMANY
R. J. Hauenstein
Affiliation:
Department of Physics, Oklahoma State University, OK, USA
T. Rotter
Affiliation:
Laboratorium für Informationstechnologie, Universität Hannover, GERMANY
A. M. Sanchez
Affiliation:
Departamento de Ciencia de los Materiales e Ingenieria Metalurgica y Quimica Inorganica, Universidad de Cadiz, SPAIN
A. Ponce
Affiliation:
Departamento de Ciencia de los Materiales e Ingenieria Metalurgica y Quimica Inorganica, Universidad de Cadiz, SPAIN
S. I. Molina
Affiliation:
Departamento de Ciencia de los Materiales e Ingenieria Metalurgica y Quimica Inorganica, Universidad de Cadiz, SPAIN
D. Mistele
Affiliation:
Laboratorium für Informationstechnologie, Universität Hannover, GERMANY
H. Klausing
Affiliation:
Laboratorium für Informationstechnologie, Universität Hannover, GERMANY
O. Semchinova
Affiliation:
Laboratorium für Informationstechnologie, Universität Hannover, GERMANY
J. Aderhold
Affiliation:
Laboratorium für Informationstechnologie, Universität Hannover, GERMANY
J. Graul
Affiliation:
Laboratorium für Informationstechnologie, Universität Hannover, GERMANY
Get access

Abstract

Wurtzite GaN samples containing one, three and five 4nm thick high temperature (HT) AlN Interlayers (IL) have been grown on (0001) sapphire substrates by plasma-assisted molecular beam epitaxy (PAMBE). N-polar as well as Ga-polar thin films have been characterized by x-ray diffraction (XRD), atomic force microscopy (AFM), transmission electron microscopy (TEM), and electrical measurements.

All samples under consideration show excellent AFM rms surface roughness below 1nm. Previously, we published a reduction of the threading dislocation (TD) density by a factor of seven due to the introduction of one AlN-IL. When introducing multiple AlN-IL a reduction by a factor of 5.2 is achieved.

Hall measurements show a rise in electron mobility due to possible 2DEG formation at the interface between GaN and the AlN-ILs. Significant growth mode differences between Ga-polar and N-polar samples result in drastically higher electron mobility values for N-polar material. For N-polar samples the exceptional mobility increase from 68 (no AlN-IL) to 707 cm2/Vs (one AlN-IL) as well as the extremely low intrinsic carrier density of 1 x 1017 cm-3 prove the applicability of AlN barriers in inverted FET devices.

Type
Research Article
Copyright
Copyright © Materials Research Society 2002

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Uchida, K., Nishida, K., Kondo, M., Munekata, H., J. Cryst. Growth 189/190, (1998) 270 Google Scholar
2. Iwaya, M., Takeuchi, T., Yamaguchi, S., Wetzel, C., Amano, H., Akasaki, I., Jpn. J. Appl. Phys. 37 (3B), L316 (1998)Google Scholar
3. Yang, C., Wu, M., Chang, C., Chi, G., J. Appl. Phys. 85 (12)), 8427 (1999)Google Scholar
4. Li, L. K., Turk, B., Wang, W. I., Syed, S., Simonian, D., Stormer, H. L., Lang, D. V., J. Vac. Sci. Technol. B 18 (3)), 1472 (2000)Google Scholar
5. Nikishin, S. A., Faleev, N. N., Antipov, V. G., Francoeur, S., Peralta, L. Grave de, Seryogin, G. A., Temkin, H., Prokofyeva, T. I., Holtz, M., and Chu, S. N. G., Appl. Phys. Lett. 75, 2073 (1999)Google Scholar
6. Stemmer, J., Fedler, F., Klausing, H., Mistele, D., Rotter, T., Semchinova, O., Aderhold, J., Sanchez, A.M., Pacheco, F.J., Molina, S.I., Fehrer, M., Hommel, D., and Graul, J., J. Cryst. Growth 216, 1520 (2000)Google Scholar
7. Sanchez, A. M., Pacheco, F. J., Molina, S. I., Stemmer, J., Aderhold, J., Graul, J., Mat. Sci. Eng. B 80, 299 (2001)Google Scholar
8. Zhang, J., Sun, D., Wang, X., Li, X., Kong, M., Zeng, Y., Li, J., Lin, L., J. Cryst. Growth 192, 471 (1998)Google Scholar
9. Kikushi, A., Yamada, T., Nakamura, S., Kusakabe, K., Sugihara, D., Kishino, K., Mat. Sci. Eng. B 82, 15 (2001)Google Scholar
10. Heying, B., I.Smochkova, Poblenz, C., Elsass, C., Fini, P., Baars, S. Den, Mishra, U., Speck, J.S., Appl. Phys. Lett. 77 (18)), 2885 (2000)Google Scholar