Hostname: page-component-76fb5796d-vvkck Total loading time: 0 Render date: 2024-04-26T04:45:29.539Z Has data issue: false hasContentIssue false

The Effect of Film Composition on the Texture and Grain Size of CuInS2 Prepared by Chemical Spray Pyrolysis

Published online by Cambridge University Press:  01 February 2011

Michael H.-C. Jin
Affiliation:
Ohio Aerospace Institute, 22800 Cedar Point Road, Brookpark, OH 44142, U.S.A. NASA Glenn Research Center, 21000 Brookpark Road, Cleveland, OH 44135, U.S.A.
Kulbinder K. Banger
Affiliation:
Ohio Aerospace Institute, 22800 Cedar Point Road, Brookpark, OH 44142, U.S.A. NASA Glenn Research Center, 21000 Brookpark Road, Cleveland, OH 44135, U.S.A.
Jerry D. Harris
Affiliation:
Dept. of Chemistry, Cleveland State University, Cleveland, OH 44115, U.S.A. NASA Glenn Research Center, 21000 Brookpark Road, Cleveland, OH 44135, U.S.A.
Aloysius F. Hepp
Affiliation:
NASA Glenn Research Center, 21000 Brookpark Road, Cleveland, OH 44135, U.S.A.
Get access

Abstract

Ternary single-source precursors were used to deposit CuInS2 thin films using chemical spray pyrolysis. We investigated the effect of the film composition on texture, secondary phase formation, and grain size. Films with either (112)- or (204/220)-preferred orientation were deposited with most often In-rich composition. The (112)-preferred orientation became more pronounced as the film composition became more In-poor. Films with a (204/220)-preferred orientation were both In-rich and contained a yet unidentified secondary phase. The phase was evaluated as an In-rich compound based on composition analysis and Raman spectroscopy. Further experiments showed that the phase could be removed by depositing a thin Cu layer prior to the growth of CuInS2. Similarly, as-grown Cu-rich (112)-oriented films did not exhibit the In-rich compound. The (204/220) preferred orientation of the film is likely related to the equivalent symmetry between planes of CuInS2 and the In-rich compound. The largest grain size (∼ 0.5μm) was achieved with Cu-rich (112)-oriented films.

Type
Research Article
Copyright
Copyright © Materials Research Society 2003

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Kessler, F., Herz, K., Powalla, M., Hartmann, M., Schmidt, M., Jasenek, A., and Schock, H. W., Mat. Res. Soc. Symp. Proc. 668, H3.6.1 (2001).Google Scholar
2. Landis, G. A. and Hepp, A. F., Proceedings of European Space Power Conference, ESA SP- 320, 517 (1991).Google Scholar
3. Banger, K. K., Cowen, J., and Hepp, A. F., Chem. Mater. 13, 3827 (2001).Google Scholar
4. Harris, J. D., Hehemann, D. G., Cowen, J. E., Hepp, A. F., Raffaelle, R. P., and Hollingsworth, J. A., Proceedings of the 28th IEEE Photovoltaic Specialists Conference, 563 (2000).Google Scholar
5. Jin, M.H.-C., Banger, K. K., Harris, J. D., Cowen, J. E., and Hepp, A. F., Proceedings of the 29th IEEE Photovoltaic Specialists Conference, 672 (2002).Google Scholar
6. Archer, M. D. and Hill, R., Clean Electricity From Photovoltaics, Chapter 7 (Imperial College Press, 2001).Google Scholar
7. Contreras, M. A., Egaas, B., Ramanathan, K., Hiltner, J., Swartzlander, A., Hasoon, F., and Noufi, R., Prog. Photovoltaic Res. Appl. 7, 311 (1999).Google Scholar
8. Klaer, J., Bruns, J., Henninger, R., Töpper, K., Klenk, R., Ellmer, K., and Bräunig, D., Proceedings of the 2nd World Conference on Photovoltaic Energy Conversion, 537 (1998).Google Scholar
9. Klenk, R., Walter, T., Schock, H. W., and Cahen, D., Adv. Mater. 5, 114 (1993).Google Scholar
10. Schock, H. W. and Rau, U., Physica B 308-310, 1081 (2001).Google Scholar
11. Walter, T. and Schock, H. W., Jpn. J. Appl. Phys. 32-3, 116 (1993).Google Scholar
12. Scheer, R., Alt, M., Luck, I., Lewerenz, H. J., Sol. Energy. Mater. Sol. Cells 49, 423 (1997).Google Scholar
13. Kodas, T. T. and Hampden-Smith, M. J., Aerosol Processing of Materials, Chapter 5 (WILEY-VCH, 1999).Google Scholar
14. Hollingsworth, J. A., Hepp, A. F., and Buhro, W. E., Chem. Vap. Deposition 5, 105 (1999).Google Scholar
15. Krunks, M., Mikli, V., Bijakina, O., Rebane, H., Mere, A., Varema, T., and Mellikov, E., Thin Solid Films 361-362, 61 (2000).Google Scholar
16. Luck, I. V., Alvarez-Garcia, J., Calvo-Barrio, L., Werner, A., Perez-Rodriguez, A., Morante, J. R., and Bräunig, D., Mat. Res. Soc. Symp. Proc. 668, H1.4.1 (2001).Google Scholar
17. Contreras, M. A., Egaas, B., King, D., Swartzlander, A., and Dullweber, T., Thin Solid Films 361-362, 167 (2000).Google Scholar
18. Ruckh, M., Kessler, J., Oberacker, T. A., and Schock, H. W., Jpn. J. Appl. Phys. 32-3, 65 (1993).Google Scholar
19. Weber, M., Scheer, R., Lewerenz, H. J., Jungblut, H., and Störkel, U., J. Electrochem. Soc. 149, G77 (2002).Google Scholar
20. Su, D. S., Neumann, W., and Giersig, M., Thin Solid Films 361-362, 218 (2000).Google Scholar