Hostname: page-component-848d4c4894-4rdrl Total loading time: 0 Render date: 2024-06-19T13:04:58.159Z Has data issue: false hasContentIssue false

The Effect of Electrical Stress on the New Top Gate N-type Depletion Mode Polycrystalline Thin Film Transistors Fabricated by Alternating Magnetic Field Enhanced Rapid Thermal Annealing

Published online by Cambridge University Press:  01 February 2011

Won-Kyu Lee
Affiliation:
wklee@emlab.snu.ac.kr, Seoul National University, School of Electrical Engineering, Gwanak-ro 599, Sillim9-dong, Gwanak-gu, Seoul, 151-742, Korea, Republic of
Sang-Myeon Han
Affiliation:
smhan@emlab.snu.ac.kr, Seoul National University, School of Electrical Engineering, Gwanak-ro 599, Sillim9-dong, Gwanak-gu, Seoul, 151-742, Korea, Republic of
Sang-Geun Park
Affiliation:
psg97@emlab.snu.ac.kr, Seoul National University, School of Electrical Engineering, Gwanak-ro 599, Sillim9-dong, Gwanak-gu, Seoul, 151-742, Korea, Republic of
Sung-Hwan Choi
Affiliation:
cshero@emlab.snu.ac.kr, Seoul National University, School of Electrical Engineering, Gwanak-ro 599, Sillim9-dong, Gwanak-gu, Seoul, 151-742, Korea, Republic of
Joonhoo Choi
Affiliation:
jhoo.choi@samsung.com, Samsung Electronics Co. Ltd., LCD Business, Yongin, 449-711, Korea, Republic of
Min-Koo Han
Affiliation:
mkh@snu.ac.kr, Seoul National University, School of Electrical Engineering, Gwanak-ro 599, Sillim9-dong, Gwanak-gu, Seoul, 151-742, Korea, Republic of
Get access

Abstract

We have fabricated the new top gate depletion mode n-type alternating magnetic field enhanced rapid thermal annealing (AMFERTA) polycrystalline silicon (poly-Si) thin film transistors (TFTs), which show the excellent electrical characteristics and superior stability compared with hydrogenated amorphous silicon (a-Si:H) TFTs and excimer laser crystallized (ELC) low temperature polycrystalline silicon (LTPS) TFTs. The fabricated AMFERTA poly-Si TFTs were not degraded under hot-carrier stress, and highly biased vertical field stress. The considerably large threshold voltage shift (ΔVTH) and trap state density reducing were occurred when the gate bias and drain bias were both large enough. The dominant mechanism of instability in the fabricated depletion mode AMFERTA poly-Si TFTs may be due to carrier induced donor-like defects reduction within the channel layer, especially near the drain junction.

Type
Research Article
Copyright
Copyright © Materials Research Society 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Lee, S.W. and Joo, S.K. IEEE Electron Device Lett., vol. 17, pp. 160162, 1996.Google Scholar
2. Yoon, S. Y. Kim, K. H. Kim, C. O. Oh, J. Y. and Jang, J. J. Appl. Phys., vol. 82, pp. 58655867, 1997.Google Scholar
3. Sameshima, T. J. Non-Cryst. Solids, 227-230, pp. 11961201, 1998.Google Scholar
4. Yoon, S. Y. Park, S. J. Kim, K. H. and Jang, J. Thin Solid Films, vol. 383, pp. 3438, 2001.Google Scholar
5. So, B. S. You, Y. H. Kim, H. J. Kim, Y. H. Hwang, J. H. Shin, D. H. Ryu, S. R. Choi, K. and Kim, Y. C. Mater. Res. Soc. Symp. Proc., vol. 862, pp. 275280, 2005.Google Scholar
6. Lee, W.K. Han, S.M. Park, S.G. Chang, Y.J. Park, K.C. Kim, C.W. and Han, M.K. Mater. Res. Soc. Symp. Proc., vol. 989, pp. 405410, 2007.Google Scholar
7. Lee, W.K. Park, J.H. Choi, J. and Han, M.K. IEEE Electron Device Lett., vol. 29, pp. 174176, 2008.Google Scholar
8. Kim, H. J. and Shin, D. H. U.S. Patent 6 747 254 B2, Jun. 8, 2004.Google Scholar
9. Kim, H. J. Solid State Phenomena, Vols. 124-126, pp. 447450, 2007.Google Scholar
10. Park, S. H. Kim, H. J. Kang, K. H. Lee, J. S. Choi, Y. K. and Kwon, O. M. J. Phys. D: Appl. Phys. 38, pp. 15111517, 2005.Google Scholar
11. Powell, M. J. IEEE Trans. Electron Devices, vol. 36, pp. 27532763, 1989.Google Scholar
12. Hack, M. Lewis, A. G. and Wu, I.W., IEEE Trans. Electron Devices, vol. 40, pp. 890897, 1993.Google Scholar
13. Kim, J. C. Choi, J. H. Kim, S. S. and Jang, J. IEEE Electron Device Lett., vol. 25, pp. 182184, 2004.Google Scholar
14. Seki, S. Kogure, O. and Tsujiyama, B. IEEE Electron Device Lett., vol. 8, pp. 368370, 1987.Google Scholar
15. Wu, I.W. Jackson, W. B. Huang, T.Y. Lewis, A. G. and Chiang, A. IEEE Electron Device Lett., vol. 11, pp. 167170, 1990.Google Scholar