Hostname: page-component-77c89778f8-9q27g Total loading time: 0 Render date: 2024-07-18T11:16:24.080Z Has data issue: false hasContentIssue false

Effect of Doping on the Interface States in Au Schottky Contact to p-In0.21Ga0.79As Grown on GaAs by Metal Organic Vapour Phase Epitaxy

Published online by Cambridge University Press:  21 February 2011

A. Singh
Affiliation:
Universidad de Oriente, Departamento de Fisica, Laboratorio de semiconductores, Apartado 188, Cumanà, 6101, Sucre, Venezuela
P. Cova
Affiliation:
Universidad de Oriente, Departamento de Fisica, Laboratorio de semiconductores, Apartado 188, Cumanà, 6101, Sucre, Venezuela
R. A. MASUT
Affiliation:
École Polytechnique de Montréal, Département de génie physique, P.O. Box 6079, Station "Centre-Ville", Montréal (Québec), H3C 3A7, Canada
Get access

Abstract

Epitaxial p-In0.21Gao0.79As/Au Schottky barrier type diodes were fabricated by evaporation of Au on chemically etched surfaces of In0.21Ga0.79As:Zn layers grown on highly doped GaAs substrate by MOVPE. 1 MHz capacitance-voltage (C-V) and Capacitance-frequency (C-f) measurements were performed in the frequency range 1 KHz-1 MHz at room temperature in Au Schottky diodes made on four epitaxial In0.2 Ga0.79As:Zn samples with doping concentrations between 6×1014cm−3 and 4×1017 cm−3. Under forward bias, a large frequency dispersion in the junction capacitance was observed which was attributed to the interface states in thermal equilibrium with the semiconductor. The interface states capacitance extracted from the C-f data was analyzed in terms of Lehovec's theoretical model of interface state continuum with single time constant, and the characteristic parameters of the interface states (energy density (Nss), relaxation time (τ) and hole capture cross-section (σh)) were determined. In the samples with doping concentration in the range 1.5×1017-4.3×1017 cm−3, Nss was about an order of magnitude higher than in the sample having a doping concentration of 5.8×1014 cm−3. Over the interface states energy range 0.40-0.65 eV, Nss decreased exponentially with energy in the highly doped samples and σh increased with energy in all the samples.

Type
Research Article
Copyright
Copyright © Materials Research Society 1994

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1 Xin, K. Y. S., Wang, W. I., Bar-Chaim, N. and Mittelstein, M., Appl. Phys. Lett. 55, 1173 (1989).Google Scholar
2 Wu, M. C., Olsson, A., Sivco, D. L. and Cho, A. Y., Appl. Phys. Lett.56, 221 (1990).Google Scholar
3 Temkin, H., Logan, R. and Tanbun-Ek, , Appl. Phys. Lett.56, 1210 (1990).Google Scholar
4 Chao, C. P., Hu, S. Y., K-K, Law, Young, B., Merz, J. L. and Gossard, A. C., J. Appl. Phys.69, 7892 (1991).Google Scholar
5 Fitzgerald, E. A., Vac, J.. Sci. Technol. B7, 782 (1989).Google Scholar
6 Roth, A. P., Sacilotti, M. A., Masut, R. A., Morris, D., Young, J. and Lacelle, C., Fortin, E. and Brebner, J. L., Can. J. Phys. 67, 330 (1989).Google Scholar
7 Singh, A., Cova, P. and Masut, R. A., J. Appl. Phys. 74, 1993 (in press)Google Scholar
8 Singh, A., Solid-St. Electron. 28, 223 (1985).Google Scholar
9 Lehovec, K., Appl. Phys. Lett. 8, 48 (1966).Google Scholar
10 Rhoderic, E. H. and Williams, R. H., Metal-Semiconductor Contacts (Clarendon, Oxford, 1988) Chap. 3, p. 92.Google Scholar
11 Kar, S. and Dahlke, W. E., Solid-St. Electron. 15, 221 (1972).Google Scholar
12 Barret, C. and Vapaille, A., Solid-St. Electron. 19, 73 (1976).Google Scholar
13 Singh, A. and Simmons, J. G., Solid-st. Electron. 25. 219 (1982).Google Scholar
14 Sahay, P. P., Shamsuddin, M. and Srivastava, R. S., Microelectronics J. 23, 625 (1992).Google Scholar