Hostname: page-component-76fb5796d-skm99 Total loading time: 0 Render date: 2024-04-25T22:56:51.864Z Has data issue: false hasContentIssue false

Effect of Dopant Concentration on the Growth of Oxide Precipitates in Silicon

Published online by Cambridge University Press:  21 February 2011

Satoru Matsumoto
Affiliation:
Department of Electrical Engineering, Keio University, Hiyoshi, Yokohama, 223, JAPAN
Ichiro Ishihara
Affiliation:
Department of Electrical Engineering, Keio University, Hiyoshi, Yokohama, 223, JAPAN
Hiroyuki Kaneko
Affiliation:
Department of Electrical Engineering, Keio University, Hiyoshi, Yokohama, 223, JAPAN
Hirofumi Harada
Affiliation:
Shin-Etsu Handotai Co., Isobe, Annaka,Gunma, 379-01, JAPAN
Takao Abe
Affiliation:
Shin-Etsu Handotai Co., Isobe, Annaka,Gunma, 379-01, JAPAN
Get access

Abstract

The dependences of dopant species and concentrations on the growth of oxide precipitates have been studied using transmission electron microscopy. Doping species are phosphorus, antimony and boron. Samples were annealed at 800°C and 850°C for 24∼384hr in dry nitrogen. In phosphorus-doped silicon, the precipitate density is independent of doping concentration and the growth of precipitate obeys the three-quarter power law. The enhancement of the precipitate growth is observed in antimony-doped silicon. On the other hand, the precipitate growth is suppressed in heavily boron-doped silicon as compared with that of lightly boron-doped silicon. This indicates the generation of excess silicon interstitials in heavily boron-doped silicon.

Type
Research Article
Copyright
Copyright © Materials Research Society 1985

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Tan, T.Y., Gardner, E.E. and Tice, W.K., Appl. Phys. Lett. 30,175(1977).10.1063/1.89340Google Scholar
2. Freeland, P.E., Jackson, K. A., Lowe, C. W. and Patel, J. R., Appl. Phys. Lett., 30, 31(1977).10.1063/1.89200Google Scholar
3. Osaka, J., Inoue, N. and Wada, K., Appl. Phys. Lett., 36, 288(1980).10.1063/1.91464Google Scholar
4. Kock, A.J.R.de and Wijgert, W.M. van de, Appl. Phys. Lett. 38, 888(1981)10.1063/1.92217Google Scholar
5. Wada, K., Inoue, N. and Kohra, K., J. Cryst. Growth, 49, 749(1980).10.1016/0022-0248(80)90304-8CrossRefGoogle Scholar
6. Rozgonyi, G.A., Jaccodine, R.J. and Pearce, C.W. in “Defects in Semiconductors II”, Mahajan, S. and Corbett, J.W. eds.(North-Holland, New York,1983)p.181 Google Scholar
7. Tsuya, H., Kondo, Y. and Kanemori, M., Japan. J. Appl. Phys., 22, L16(1983).10.1143/JJAP.22.L16Google Scholar
8. Patel, J.R. in “Semiconductor Silicon 1981”, Huff, H.R., Krieger, R.J. and Takeishi, Y. eds.(The Electrochem. Soc., Pennington, 1981)p.189 Google Scholar
9. Tempelhoff, K.,Spieglberg, F.and Gleichman, R. in “SemiconductorSilicon 1977”,Huff, H.R. and Sirtl, E. eds.(TheElectrochem.Soc. 1977)p.585 Google Scholar
10. Inoue, N., Wada, K. and Osakain, J. “SemiconductorSilicon 1981”, Huff, H.R., Krieger, R.J. and Takeishi, Y. eds.(The Electrochem. Soc. 1981)p.282 Google Scholar
11. Mikkelsen, J.C., Appl. Phys. Lett. 40, 336(1982).10.1063/1.93089CrossRefGoogle Scholar
12. Heck, D., Tressier, R.E. and Monkowski, J., J. Appl. Phys., 54, 5739(1983)10.1063/1.331796Google Scholar
13. Abe, T., Harada, H. and Chikawa, J. in “Defects in Semiconductors II”, Mahajan, S. and Corbett, J.W.eds.(North-Holland, New York, 1983)p.l Google Scholar