Hostname: page-component-7479d7b7d-pfhbr Total loading time: 0 Render date: 2024-07-12T11:26:20.869Z Has data issue: false hasContentIssue false

Effect of Defects on Dielectric Properties in KTiOPO4, KTiOAsO4, RbTiOAsO4 and CsTiOAsO4 Single Crystals

Published online by Cambridge University Press:  15 February 2011

A. R. Guo
Affiliation:
Department of Physics, University of Puerto Rico, P. O. Box 23343, San Juan, PR 00931–3343, USA
Z. -Y. Cheng
Affiliation:
Department of Physics, University of Puerto Rico, P. O. Box 23343, San Juan, PR 00931–3343, USA
R. S. Katiyar
Affiliation:
Department of Physics, University of Puerto Rico, P. O. Box 23343, San Juan, PR 00931–3343, USA
Ruyan Guo
Affiliation:
Materials Research Laboratory, The Pennsylvania State University, University Park, PA, 16802–4801, USA
A. S. Bhalla
Affiliation:
Materials Research Laboratory, The Pennsylvania State University, University Park, PA, 16802–4801, USA
Get access

Abstract

Dielectric measurements were carried out in single crystals of KTiOPO4, KTiOAsO4, RbTiOAsO4 and CsTiOAsO4. All of the materials exhibit a clear dielectric relaxation process in the low temperature range and a conductance mechanism in the high temperature range. The dielectric relaxation process can be well described by the Debye dielectric model with an activation energies of 0.8 eV, 0.5 eV and 0.4 eV respectively. The relaxation process is associated with the deviation of the alkali ions from its ideal lattice positions. The high temperature conductance is associated with the motion of the alkali ions from one lattice site to another. Therefore, both the low temperature relaxation process and the high temperature conductance originate from different features of defect behavior of alkali ions in the cage structure of these materials.

Type
Research Article
Copyright
Copyright © Materials Research Society 1997

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCE

1. Thomas, P. A., Glazer, A. M., Watts, B. E., Acta Cryst. B46, 333343 (1990).Google Scholar
2. Ou, Z. Y., Peereira, S. F., Polzik, E. S. and Kimble, H. J., Opt. Lett. 17, 640 (1992).Google Scholar
3. Cheng, L. T., Cheng, L. T., Bierlein, J. D., Parise, J., Appl. Phys. Lett. 64, 1321 (1994).Google Scholar
4. Marnier, G., Boulanger, B. and Menaert, B., J. Phys.: Condens. Matter, 1, 5509 (1989).Google Scholar
5. Thomas, P. A., Mayo, S. C., Watts, B. E., Acta Cryst. B48, 401407 (1992).Google Scholar
6. Loiacono, G. M., Loiacono, D. N., Stolzenberger, R. A., J. Cryst. Growth, 131, 323330 (1993).Google Scholar
7. Cheng, L. T., Cheng, L. K., Bierlein, J. D., Zumsteg, F. C., Appl. Phys. Lett. 63, 2618–20 (1993).Google Scholar
8. Li, H. P. and Wang, X., Ferroelectrics, 17, 91 (1994).Google Scholar
9. Tu, C. -S., Guo, A. R., Tao, R. W., Katiyar, R. S., Guo, R., Bhalla, A. S., J. Appl. Phys. 76, 3235–40(1996).Google Scholar
10. Cheng, L. K., Cheng, L. -T., Bierlein, J. D., Zumsteg, F. C., and Ballman, A. A., Appl. Phys. Lett, 62, 346 (1993).Google Scholar
11. Guo, A. R., Tu, C. -S., Tao, R., Katiyar, R. S., Guo, R. and Bhalla, A. S., Ferroelectric letter, 21, 71 (1996).Google Scholar
12. Loiacono, G. M., Loiacono, D. N., Zola, J. J., and Stolzenberger, R. A., McGee, T. and Norwood, R. G., Appl. Phys. Lett. 61, 895 (1992).Google Scholar
13. Kugel, V. D., Rosenman, G., Angert, N., Yaschin, E., and Roth, M., J. Appl. Phys. 76, 4823 (1994).Google Scholar
14. Shaldin, Y. V. and Poprawski, R., Ferroelectrics, 106, 399 (1990).Google Scholar
15. Cheng, L. K. and Bierlein, J. D., Ferroelectrics, 142, 209 (1993).Google Scholar
16. Tordjman, I., Masse, R. and Guitel, J. C., Z. Kristallogr. 139, 103115 (1974).Google Scholar
17. Ballman, A. A., Brown, H., Olson, D. H., and Rico, C. E., J. Cryst. Growth, 75, 390 (1986).Google Scholar
18. Tordjman, I., Masse, R. and Guitel, J. C., Z. Kristallogr. Bd, 139, 12, (1974).Google Scholar
19. Hochli, U. T., Knorr, K., Loidl, A., Adv. Phys., 39, 405 (1990).Google Scholar
20. Kalesinskas, V., Pavlova, N., Rez, I., and J. Grigas. Liet. Fiz. Rink. 22, 87 (1982).Google Scholar