Skip to main content Accessibility help
×
Home

Effect of Defects on Dielectric Properties in KTiOPO4, KTiOAsO4, RbTiOAsO4 and CsTiOAsO4 Single Crystals

  • A. R. Guo (a1), Z. -Y. Cheng (a1), R. S. Katiyar (a1), Ruyan Guo (a2) and A. S. Bhalla (a2)...

Abstract

Dielectric measurements were carried out in single crystals of KTiOPO4, KTiOAsO4, RbTiOAsO4 and CsTiOAsO4. All of the materials exhibit a clear dielectric relaxation process in the low temperature range and a conductance mechanism in the high temperature range. The dielectric relaxation process can be well described by the Debye dielectric model with an activation energies of 0.8 eV, 0.5 eV and 0.4 eV respectively. The relaxation process is associated with the deviation of the alkali ions from its ideal lattice positions. The high temperature conductance is associated with the motion of the alkali ions from one lattice site to another. Therefore, both the low temperature relaxation process and the high temperature conductance originate from different features of defect behavior of alkali ions in the cage structure of these materials.

Copyright

References

Hide All
1. Thomas, P. A., Glazer, A. M., Watts, B. E., Acta Cryst. B46, 333343 (1990).
2. Ou, Z. Y., Peereira, S. F., Polzik, E. S. and Kimble, H. J., Opt. Lett. 17, 640 (1992).
3. Cheng, L. T., Cheng, L. T., Bierlein, J. D., Parise, J., Appl. Phys. Lett. 64, 1321 (1994).
4. Marnier, G., Boulanger, B. and Menaert, B., J. Phys.: Condens. Matter, 1, 5509 (1989).
5. Thomas, P. A., Mayo, S. C., Watts, B. E., Acta Cryst. B48, 401407 (1992).
6. Loiacono, G. M., Loiacono, D. N., Stolzenberger, R. A., J. Cryst. Growth, 131, 323330 (1993).
7. Cheng, L. T., Cheng, L. K., Bierlein, J. D., Zumsteg, F. C., Appl. Phys. Lett. 63, 2618–20 (1993).
8. Li, H. P. and Wang, X., Ferroelectrics, 17, 91 (1994).
9. Tu, C. -S., Guo, A. R., Tao, R. W., Katiyar, R. S., Guo, R., Bhalla, A. S., J. Appl. Phys. 76, 3235–40(1996).
10. Cheng, L. K., Cheng, L. -T., Bierlein, J. D., Zumsteg, F. C., and Ballman, A. A., Appl. Phys. Lett, 62, 346 (1993).
11. Guo, A. R., Tu, C. -S., Tao, R., Katiyar, R. S., Guo, R. and Bhalla, A. S., Ferroelectric letter, 21, 71 (1996).
12. Loiacono, G. M., Loiacono, D. N., Zola, J. J., and Stolzenberger, R. A., McGee, T. and Norwood, R. G., Appl. Phys. Lett. 61, 895 (1992).
13. Kugel, V. D., Rosenman, G., Angert, N., Yaschin, E., and Roth, M., J. Appl. Phys. 76, 4823 (1994).
14. Shaldin, Y. V. and Poprawski, R., Ferroelectrics, 106, 399 (1990).
15. Cheng, L. K. and Bierlein, J. D., Ferroelectrics, 142, 209 (1993).
16. Tordjman, I., Masse, R. and Guitel, J. C., Z. Kristallogr. 139, 103115 (1974).
17. Ballman, A. A., Brown, H., Olson, D. H., and Rico, C. E., J. Cryst. Growth, 75, 390 (1986).
18. Tordjman, I., Masse, R. and Guitel, J. C., Z. Kristallogr. Bd, 139, 12, (1974).
19. Hochli, U. T., Knorr, K., Loidl, A., Adv. Phys., 39, 405 (1990).
20. Kalesinskas, V., Pavlova, N., Rez, I., and J. Grigas. Liet. Fiz. Rink. 22, 87 (1982).

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed