Hostname: page-component-8448b6f56d-c4f8m Total loading time: 0 Render date: 2024-04-24T09:10:36.822Z Has data issue: false hasContentIssue false

The Effect of Cu-Macroalloying Additions to Rapidly Solidified NiAl Intermetallic Compound

Published online by Cambridge University Press:  21 March 2011

J. Colin
Affiliation:
Instituto de Investigaciones en Materiales-UNAM, Circuito Exterior S/N, Cd. Universitaria Mexico, D. F., 04510, MÉXICO.
B. Campillo
Affiliation:
Instituto de Investigaciones en Materiales-UNAM, Circuito Exterior S/N, Cd. Universitaria Mexico, D. F., 04510, MÉXICO.
C. Gonzalez
Affiliation:
Instituto de Investigaciones en Materiales-UNAM, Circuito Exterior S/N, Cd. Universitaria Mexico, D. F., 04510, MÉXICO.
O. Alvarez-Fregoso
Affiliation:
Instituto de Investigaciones en Materiales-UNAM, Circuito Exterior S/N, Cd. Universitaria Mexico, D. F., 04510, MÉXICO.
J. A. Juarez-Islas
Affiliation:
Instituto de Investigaciones en Materiales-UNAM, Circuito Exterior S/N, Cd. Universitaria Mexico, D. F., 04510, MÉXICO.
Get access

Abstract

The effects of two variables on the NiAl intermetallic compound were studied: 1) copper macroalloying additions and 2) rapid solidification processing. For that purpose, several NiCuAl alloys were vacuum induction melted and rapidly solidified by using a copper wheel, rotating at 15 m/s, under an argon atmosphere. Chemical analysis of as-rapidly solidified ribbons indicated, that four alloy compositions lie in the β-(Ni, Cu)Al field, one alloy composition lie in the boundary of the β-(Ni, Cu)Al/(Ni, Cu)2Al3 fields, one alloy composition lies in the boundary of the β-(Ni, Cu)Al/β-(Ni, Cu)Al + (Ni, Cu)3Al fields and two alloy compositions lie in the β-(Ni, Cu)Al + (Ni, Cu)3Al field. Transmission electron microscopic observations carried out in as-rapidly solidified ribbons, revealed the presence of at least three main structures: i) β-(Ni, Cu)Al, ii) β-(Ni, Cu)Al + martensite (Ni, Cu)Al and iii) (Ni, Cu)3Al + martensite (Ni, Cu)Al. Microhardness Vickers and tensile test data indicated that alloys with a β-(Ni, Cu)Al + martensite (Ni, Cu)Al microstructure have improved room temperature ductility, reaching values of elongation up to 3.28 %.

Type
Research Article
Copyright
Copyright © Materials Research Society 2001

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Schulson, E. M., The Int. J. of Powder Met., 23, 25 (1987).Google Scholar
2. Miracle, D. B., Acta Metall., 41, 649 (1993).10.1016/0956-7151(93)90001-9Google Scholar
3. Neobe, R. D., Bowman, R. R. and Nathal, M. V., Inter. Mater. Rev., 38, 193 (1993).10.1179/imr.1993.38.4.193Google Scholar
4. Hughes, T., Lautenschlager, E. P., Cohen, J. B. and Brittain, J. O., J. of Appl. Phys., 42, 3705 (1971).10.1063/1.1659674Google Scholar
5. Umakoshi, Y., in Materials Science and Technology, eds. Cahn, R. W., Haasen, P. and Kramer, E. J., VHC Publishers Inc., 1, 254 (1991).Google Scholar
6. Miracle, D. B. and Darolia, R., Intermetallic Compounds, eds. Westbrook, J. H. and Fleisher, R. L., John Wiley and Sons Ltd., 2, 53 (1994).Google Scholar
7. Nagoal, P. and Baker, I., Metall. Trans., 21A, 2281 (1990).Google Scholar
8. Baker, I., Nagpal, P., Liu, F. and Munroe, P. R., Acta Metall. Matter., 39, 1637 (1991).10.1016/0956-7151(91)90251-UGoogle Scholar
9. Jacobi, H. and Engell, H. J., Acta Metallurgica, 19, 701 (1971).10.1016/0001-6160(71)90025-3Google Scholar
10. Bradley, A. J. and Lipson, H., Proc. Roy. Soc., 177A, 421 (1938).Google Scholar
11. Cheng, T., J. of Mat. Sci., 30, 2877 (1995).10.1007/BF00349659Google Scholar
12. Kumar, K. S., Mannar, S. K. and Viswanadhan, R. K., Acta Metall, 40, 1201 (1992).10.1016/0956-7151(92)90419-FGoogle Scholar
13. Cheng, T., Scripta Metall., 27, 771 (1992)10.1016/0956-716X(92)90504-8Google Scholar