Hostname: page-component-76fb5796d-wq484 Total loading time: 0 Render date: 2024-04-26T04:16:30.230Z Has data issue: false hasContentIssue false

The Effect of Crystallographic Orientation on the Mechanical Properties of a Single Crystal NiAl+Fe Alloy

Published online by Cambridge University Press:  01 January 1992

D.F. Lahrman
Affiliation:
Engineering Materials Technology Laboratories, GE Aircraft Engines, 1 Neumann Way, Cincinnati, OH 45215.
R.D. Field
Affiliation:
Engineering Materials Technology Laboratories, GE Aircraft Engines, 1 Neumann Way, Cincinnati, OH 45215.
R. Darolia
Affiliation:
Engineering Materials Technology Laboratories, GE Aircraft Engines, 1 Neumann Way, Cincinnati, OH 45215.
Get access

Abstract

In this study, the room temperature tensile properties of a single crystal NiAl alloy were investigated as a function of orientation. Fifteen crystallographic orientations were tested, including the <001>, <110> and <111>. The tensile properties measured include yield strength, plastic strain to failure, and ultimate tensile strength. Room temperature ductility as high as 1.4% was measured as close as 10° from the <001> orientation.

Type
Research Article
Copyright
Copyright © Materials Research Society 1995

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Ball, A., and Smallman, R.E., Acta Met. 14, 1349 (1966).Google Scholar
2. Ball, A., and Smallman, R.E., Acta Met. 14, 1517 (1966).Google Scholar
3. Fraser, H.L., Smallman, R.E., and Loretto, M.H., Phil. Mag. 28, 651 (1973).Google Scholar
4. Fraser, H.L., Smallman, R.E., and Loretto, M.H., Phil. Mag. 28, 667 (1973).Google Scholar
5. Field, R.D., Lahrman, D.F. and Darolia, R., Mat. Res. Symp. Proc. 213, 255 (1991).Google Scholar
6. Pascoe, R.T. and Newey, C.W.A., Metal Science Journal 2, 138 (1968).Google Scholar
7. Pascoe, R.T. and Newey, C.W.A., Phys. Stat. Sol. 29. 357 (1968).Google Scholar
8. Wasilewski, R.J., Butler, S.R., and Hanlon, J.E., Trans. Met. Soc.AIME 239, 1357 (1967).Google Scholar
9. Rozner, A.G. and Wasilewski, R.J., Journal of the Institute of Metals 94, 169 (1966).Google Scholar
10. Grala, E.M., Mechanical Properties of Intermetallic Compounds, edited by Westbrook, J.H.. p.358, (1960).Google Scholar
11. Sauthoff, G., Z. Metallkde. 80, 337 (1989).Google Scholar
12. Jung, I., Rudy, M. and Sauthoff, G., Mat. Res. Symp. Proc. 81, 263, (1987).Google Scholar
13. Darolia, R., Lahrman, D.F. and Field, R.D., Scripta Met. 26, 1007 (1992).Google Scholar
14. Darolia, R., Journal of Metals, 43, 44 (1991).Google Scholar
15. Darolia, R., Lahrman, D.F., Field, R.D., Dobbs, J.R., Chang, K.M., Goldman, E.H. and Konitzer, D.G., Ordered Intermetallics: Physical Properties and Mechanical Behavior, edited by Liu, C. T., Cahn, R.W. and Sauthoff, G., NATO ASI Series, p. 669 (1992).Google Scholar
16. Field, R.D., Lahrman, D.F. and Darolia, R., Mat. Res. Symp. Proc. Symposium L (1992).Google Scholar
17. Field, R.D., Lahrman, D.F. and Darolia, R., Acta Met. Mater. 39, 2969 (1991).Google Scholar
18. Cotton, J.D., The Influence of Cr on the Structure and Mechanical Properties of B2 Nickel Aluminide Allovs, PhD Thesis, University of Florida (1991).Google Scholar
19. Miracle, D.B.. Russel, S., and Law, CC. Mat. Res. Symp. Proc. 133, 225 (1991).Google Scholar
20. Lahrman, D.F., Field, R.D. and Darolia, R., Mat. Res. Symp. Proc. 213, 603, (1991).Google Scholar
21. Lahrman, D.F., Field, R.D. and Darolia, R., submitted to Scripta Met. (1993).Google Scholar
22. Darolia, R., Field, R.D., Lahrman, D.F. and Freeman, A.J., Final Contract Report, F49620-88-C-0052.Google Scholar