Hostname: page-component-76fb5796d-zzh7m Total loading time: 0 Render date: 2024-04-25T20:44:01.385Z Has data issue: false hasContentIssue false

Early-Effect like Behavior in Space Charge Regions of Organic Bulk-Heterojunction Photodiodes

Published online by Cambridge University Press:  21 March 2012

Ali Bilge Guvenc
Affiliation:
Department of Electrical Engineering, University of California Riverside, Riverside, CA 92521, U.S.A.
Cengiz Ozkan
Affiliation:
Department of Mechanical Engineering, University of California Riverside, Riverside, CA 92521, U.S.A. Material Science and Engineering Program, University of California Riverside, Riverside, CA 92521, U.S.A.
Mihrimah Ozkan
Affiliation:
Department of Electrical Engineering, University of California Riverside, Riverside, CA 92521, U.S.A.
Get access

Abstract

The space charge region width of the Schottky barrier that forms on the interface between aluminum and organic semiconductor polymer of bulk-heterojunction organic photodiodes has been investigated according to reverse voltage bias over the device and the capacitance-voltage characteristics. Here, we investigated the space charge region widths according to incident light power. Comparison of the mathematical models and experimental data measured under different light power indicate that effect of light on the space charge region of photodiodes is similar to the effect of base-emitter voltage on the space charge region of base-emitter junction in bipolar junction transistors.

Type
Articles
Copyright
Copyright © Materials Research Society 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Chaudhary, S., Lu, H. W., Muller, A. M., Bardeen, C. J. and Ozkan, M., Nano Letters 7, 19731979 (2007).Google Scholar
2. Abdou, M. S. A., Orfino, F. P., Son, Y. and Holdcroft, S., Journal of the American Chemical Society 119(19), 45184524 (1997).Google Scholar
3. Glatthaar, M., Riede, M., Keegan, N., Sylvester-Hvid, K., Zimmermann, B., Niggemann, M., Hinsch, A. and Gombert, A., Solar Energy Materials and Solar Cells 91(5), 390393 (2007).Google Scholar
4. Rep, D. B. A., Morpurgo, A. F. and Klapwijk, T. M., Organic Electronics 4(4), 201207 (2003).Google Scholar
5. Bisquert, J., Garcia-Belmonte, G., Munar, A., Sessolo, M., Soriano, A. and Bolink, H. J., Chemical Physics Letters 465(1-3), 5762 (2008).Google Scholar
6. Wang, M., Tang, Q., An, J., Xie, F., Chen, J., Zheng, S., Wong, K. Y., Miao, Q. and Xu, J., ACS Applied Materials & Interfaces 2(10), 26992702 (2010).10.1021/am100541dGoogle Scholar
7. Wang, M., Xie, F., Xie, W., Zheng, S., Ke, N., Chen, J., Zhao, N., Xu, J. B., Applied Physics Letters 98, 183304 (2011)Google Scholar
8. Muller, R. S., Kamins, T. I. and Chan, M., Device Electronics for Integrated Circuits. (Wiley, New York, 2003).Google Scholar
9. Chiang, K.-Y., Tseng, H.-Y., Lin, C.-Y., Kung, C.-P. and Hou, W.-H., MRS Online Proceedings Library 965, (2006).Google Scholar
10. Sze, S. M. and Ng, K. K., Physics of Semiconductors. (Wiley, New Jersey, 2007).Google Scholar
11. Lioudakis, E., Othonos, A., Alexandrou, I. and Hayashi, Y., Applied Physics Letters 91(11), 111117 (2007).10.1063/1.2785120Google Scholar
12. Kumar, P., Jain, S. C., Kumar, V., Chand, S. and Tandon, R. P., Journal of Physics D-Applied Physics 42(5), 055102 (2009).Google Scholar
13. Anderson, B. L. and Anderson, R. L., Fundamentals of Semiconductor Devices. (Mc Graw Hill, New York, 2005).Google Scholar
14. Garcia-Belmonte, G., Munar, A., Barea, E. M., Bisquert, J., Ugarte, I. and Pacios, R., Organic Electronics 9(5), 847851 (2008).Google Scholar
15. Jarosz, G., Journal of Non-Crystalline Solids 354(35-39), 43384340 (2008).Google Scholar