Skip to main content Accessibility help
×
Home

Dynamics of Water Confined on the Surface of Titania and Cassiterite Nanoparticles

  • Nancy L. Ross (a1), Elinor C. Spencer (a1), Andrey A. Levchenko (a2), Alexander I. Kolesnikov (a3), Douglas L. Abernathy (a3), Juliana Boerio-Goates (a4), Brian F. Woodfield (a4), Alexandra Navrotsky (a5), Guangshe Li (a6), Wei Wang (a7) and David J. Wesolowski (a7)...

Abstract

We present low-temperature inelastic neutron scattering spectra collected on two metal oxide nanoparticle systems, isostructural TiO2 rutile and SnO2 cassiterite, between 0-550 meV. Data were collected on samples with varying levels of water coverage, and in the case of SnO2, particles of different sizes. This study provides a comprehensive understanding of the structure and dynamics of the water confined on the surface of these particles. The translational movement of water confined on the surface of these nanoparticles is suppressed relative to that in ice-Ih and water molecules on the surface of rutile nanoparticles are more strongly restrained that molecules residing on the surface of cassiterite nanoparticles. The INS spectra also indicate that the hydrogen bond network within the hydration layers on rutile is more perturbed than for water on cassiterite. This result is indicative of stronger water-surface interactions between water on the rutile nanoparticles than for water confined on the surface of cassiterite nanoparticles. These differences are consistent with the recently reported differences in the surface energy of these two nanoparticle systems.

Copyright

References

Hide All
1. Baraton, M.-I., and Merhari, L., J. Nanopar. Res., 6, 107 (2004)
2. Waychunas, G. A., Kim, C. S., and Banfield, J. F., J. Nanopar. Res., 7, 407 (2005)
3. Aroutiounian, V. M., Arakelyan, V. M., and Shahnazaryan, G. E., Solar Energy, 78, 581 (2005)
4. Al‑Abadleh, H. A., Grassian, V. H.,Sur. Sci. Rep., 52, 63 (2003)
5. Li, G., Li, L., Boerio-Goates, J., and Woodfield, B. F., J. Am. Chem. Soc., 127, 8659 (2005)
6. Levchenko, A. A., Li, G., Boerio-Goates, J., Woodfield, B. F., and Navrotsky, A., Chem. Mater. 18, 6324 (2006)
7. Boerio-Goates, J., Li, G., Li, L., Walker, T. F., Parry, T., and Woodfield, B. F., Nano Lett., 6, 750 (2006)
8. Alba‑Simionesco, C., Coasne, B., Dosseh, G., Dudziak, G., Gubbins, K. E., Radhakrishnan, R., and Sliwinska‑Bartkowiak, M., J. Phys.: Condens. Matter., 18, R15 (2006)
9. Alcoutlabi, M., and Mckenna, G. B., J. Phys.: Condens. Matter., 17, R461 (2006)
10. The coherent (σcoh), incoherent (σinc), and total (σtot) neutron scattering cross-sections for hydrogen are 1.76, 80.26, and 82.02 barns, respectively. For titanium σcoh = 1.48 barns, σinc = 2.87 barns, and σtot = 4.35 barns. For tin σcoh = 4.871 barns, σinc = 0.022 barns, and σtot = 4.893 barns. For oxygen σcoh = 4.23 barns, σinc = 0.00 barns, and σtot = 4.23 barns. These values are taken from V. F. Sears, Neutron News, 3, 26 (1992)
11. Spencer, E. C., Levchenko, A. A., Ross, N. L., Kolesnikov, A. I., Boerio‑Goates, J., Woodfield, B. F., Navrotsky, A., and Li, G., J. Phys. Chem. A, 113, 2796 (2009)
12. Ma, Y., Castro, R. H. R., Zhou, W., Navrotsky, A., J. Mater. Res., in press (2011)
13. Bandura, A. V., Kubicki, J. D., and Sofo, J. O., J. Phys. Chem. B, 112, 11616 (2008)
14. Mamontov, E., Vlcek, L., Wesolowski, D. J., Cummings, P. T., Wang, W., Anovitz, L. M., Rosenqvist, J., Brown, C. M., and Garcia Sakai, V., J. Phys. Chem. C, 111, 4328 (2007)
15. Liu, S., Liu, Q., Boerio-Goates, J., Woodfield, B. F., J. Adv. Mater., 39, 18 (2007)
16. Loong, C.-K., Ikeda, S., and Carpenter, J. M., Nuc. Instr. Meth. Phys. Res., A260, 381 (1987)
17. Kolesnikov, A. I., Zanotti, J.‑M., and Loong, C.‑K., Neutron News, 15(3), 19 (2004)
18. Abernathy, D. L., Natiziario Neutroni E Luce Di Sincrotrone, 13(1), 4 (2008)
19. Li, J. and Kolesnikov, A. I., J. Mol. Liq., 100, 1 (2002)
20. Li, J.-C., Londono, J. D., Ross, D. K., Finney, J. L., Tomkinson, J., Sherman, W. F., J. Chem. Phys., 94(10), 6770 (1991)
21. Spencer, E. C., Ross, N. L., Parker, S. F., Kolesnikov, A. I., Woodfield, B. F., Woodfield, K., Rytting, M., Boerio-Goates, J., Navrotksy, A., J. Phys. Chem. A, submitted (2011)
22. Levchenko, A. A., Kolesnikov, A. I., Ross, N. L., Boerio-Goates, J., Woodfield, B. F., Li, G., and Navrotsky, A., J. Phys. Chem. A, 111, 12584 (2007)
23. Loong, C.‑K., Richardson, J. W. Jr., and Ozawa, M., J. Catalysis, 157, 636 (1995)
24. Ozawa, M., Suzuki, S., Loong, C.‑K., and Nipko, J. C., Appl. Sur. Sci., 121/122, 133 (1997)
25. PeakFit v4.12, SeaSolve Software Inc., 1999–2003.

Keywords

Dynamics of Water Confined on the Surface of Titania and Cassiterite Nanoparticles

  • Nancy L. Ross (a1), Elinor C. Spencer (a1), Andrey A. Levchenko (a2), Alexander I. Kolesnikov (a3), Douglas L. Abernathy (a3), Juliana Boerio-Goates (a4), Brian F. Woodfield (a4), Alexandra Navrotsky (a5), Guangshe Li (a6), Wei Wang (a7) and David J. Wesolowski (a7)...

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed