Hostname: page-component-848d4c4894-ndmmz Total loading time: 0 Render date: 2024-05-18T07:21:50.262Z Has data issue: false hasContentIssue false

Dynamics of Periodic Step-Bunching During Growth on Vicinal GaAs(110) Surfaces: Computer Simulations and Experiments

Published online by Cambridge University Press:  15 February 2011

Mohan Krishnamurthy
Affiliation:
Materials Department, University of California, Santa Barbara, CA 93106
D. R. M. Williams
Affiliation:
Materials Department, University of California, Santa Barbara, CA 93106
P. M. Petroff
Affiliation:
Materials Department, University of California, Santa Barbara, CA 93106
Get access

Abstract

Molecular beam epitaxial growth on GaAs(110) vicinal surfaces results in the formation of periodic micro-facets. We compare experimental results with computer simulations of a simple one dimensional step-flow growth model. The simulations show that preferential adatom attachment to the down step in a step array results in the destruction of step uniformity. A kinetic limitation due to adatom diffusion length along the terraces leads to stabilization of a periodic array of step-bunches. We extend our simulations to show the effects of the attachment and diffusion parameters on the dynamics of facet evolution.

Type
Research Article
Copyright
Copyright © Materials Research Society 1993

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1] Burton, W. K., Cabrera, N. and Frank, F. C., Philos. Trans. R. Soc. London, Ser. A 243, 299 (1951).Google Scholar
[2] see for example, Ghez, R. and Iyer, S. S., IBM J. Res. Develop. 32, 804, (1988).Google Scholar
[3] Schwoebel, R. L., J. Appl. Phys. 40, 614 (1969).CrossRefGoogle Scholar
[4] Chernov, A. A., Modern Crystallography III (Springer-Verlag, Berlin, 1984).Google Scholar
[5] Tokura, Y., Saito, H. and Fukui, T., J. Cryst. Growth, 94, 46 (1989).Google Scholar
[6] Gossmann, H. J., Sinden, F. W. and Feldman, L. C., J. Appl. Phys. 67, 745 (1990).Google Scholar
[7] Chalmers, S. A., Tsao, J. Y. and Gossard, A. C., Appl. Phys. Lett. 61, 645 (1992).Google Scholar
[8] Williams, D. R. M. and Krishnamurthy, Mohan, Appl. Phys. Lett. 62, 1350 (1993).Google Scholar
[9] Colas, E., Nihous, G. C. and Hwang, D. M., J. Vac. Sci. Technol. A 10, 691 (1992).Google Scholar
[10] Wheeler, A.A., Ratsch, C., Morales, A., Cox, H. M. and Zangwill, A., Phys. Rev. B 46, 2428 (1992).CrossRefGoogle Scholar
[11] Krishnamurthy, M., Wassermeier, M., Williams, D. R. M. and Petroff, P. M., Appl. Phys. Lett. to be published.Google Scholar
[12] Nötzel, R., Däweritz, L., Ledentsov, N. N. and Ploog, K., Appl. Phys. Lett. 60, 1615 (1992).CrossRefGoogle Scholar
[13] Sato, M., Maehashi, K., Asahi, H., Hasegawa, S., Nakashima, H., Superlattices and Microstructures, 7, 279 (1990).CrossRefGoogle Scholar
[14] Krishnamurthy, M., Wassermeier, M., Weman, H., Merz, J. L. and Petroff, P. M., Mat. Res. Symp. Proc. 237, 473 (1992).Google Scholar
[15] Williams, D. R. M., Krishnamurthy, M. and Petroff, P. M., unpublished.Google Scholar