Skip to main content Accessibility help

Dynamics of Laser Ablation and Vaporization of Lead Zirconate Titanate: Target Effects

  • R.E. Leuchtner (a1), J.S. Horwitz (a1) and D.B. Chrisey (a1)


Using the pulsed laser deposition (PLD) technique to prepare PbZrxTi(1−x)03 (PZT) films from stoichiometric targets, it has been found that the Pb content of the films is very sensitive to, among other parameters, the phase of the ablation target. In an effort to better understand PZT film growth, a time-of-flight quadrupole mass spectrometer (TOF/QMS) was used to obtain the temporal and mass profiles of material ejected from two different solid targets with a nominal composition of PbZr0.54Ti0.46O3 over a laser fluence range of 0.2 to 2.0 J/cm2. The ablation targets were made from either a compressed mixture of oxides or a fully reacted PZT solid. The composition of the plume varied significantly depending upon the phase of the target and the laser fluence. In general, two distinct ejection processes were identified and the TOF profiles observed could be characterized as either thermal vaporization (fluence ≤ 0.3 J/cm2), ablation, with a highly forward directed ejection pattern normal to the target surface, or a combination of the two processes (fluences ≥ 0.3 J/cm2). The thermal vaporization (or low energy) component of the ejected species were modeled using a Maxwell-Boltzmann distribution. The fully reacted target yielded atomic species which had higher translational temperatures (about 100–700K) than the corresponding components of the pressed oxide target. The translational temperatures ranged from about 1000–6500K, depending upon the species and the laser fluence. Both targets showed distinctly different behavior as a function of laser fluence with regard to the production of PbO: the PbO/Pb ratio from the pressed oxide target was roughly constant while the PbO/Pb ratio from the fully reacted target decreased significantly with increased laser fluence. It is postulated that PbO plays an important role in the incorporation of Pb into the film during film growth.


Corresponding author

* Department of Physics, University of New Hampshire, Durham, NH 03824


Hide All
1. Cheung, J. and Sankur, H., CRC Crit. Rev. Solid State Mater. Sci., 15, 63 (1988).
2. Newman, H.S., Chrisey, D.B., Horwitz, J.S., Weaver, B.D., and Reeves, M.E., IEEE Trans. Magnetics, 27, 2540 (1991).
3. Pond, J.M., Carroll, K.R., Horwitz, J.S., Chrisey, D.B., Osofsky, M.S., and Cestone, V.C., Appl. Phys. Lett. 59, 3033 (1991).
4. Leuchtner, R.E., Chrisey, D.B., Horwitz, J.S., and Grabowski, K.S., Surf. and Coatings Tech., 51, 476 (1992).
5. Cotell, C.M., Chrisey, D.B., Grabowski, K.S., Sprague, J.A., and Gossett, C.R., J. Appl. Biomaterials, 3, 87 (1992).
6.Materials Research Symposium Proceedings, Vol. 191 Paine, D.C. and Bravman, J.C., eds. 1990, and J. Appl. Biomaterials, Vol. 243, Kingon, A.I., Myers, E.R., and Tuttle, B., eds., 1991.
7. Leuchtner, R.E., Horwitz, J.S., and Chrisey, D.B., Materials Research Symposium Proceedings, Vol. 243, p. 525, Kingon, A.I., Myers, E.R., and Tuttle, B., eds., 1991.
8. Grabowski, K.S., Horwitz, J.S., and Chrisey, D.B., Ferroelectrics, 116, 19 (1991).
9. Horwitz, J.S., Grabowski, K.S., Chrisey, D.B., and Leuchtner, R.E., Appi. Phys. Lett., 59, 1565 (1991).
10. Leuchtner, R.E., Horwitz, J.S., Chrisey, D.B., Grabowski, K.S., Appl. Phys. Lett., 60, 1193 (1992).
11. Leuchtner, R.E., Grabowski, K.S., Chrisey, D.B., and Horwitz, J.S., Integrated Ferroelectrics, 1, 223 (1992).
12. Dimos, D., Sandia National Laboratories, private communication.
13. Anderson, J.B., Molecular Beams and Low Density Gas Dynamics, Wegener, P., ed., Dekker, pp. 1–67, 1974.
14. Cheung, N.H., Ying, Q.Y., Zheng, J.P., and Kwok, H.S., J. Appl. Phys. 69, 6349 (1991).
15. Fushimi, S. and Ikeda, T., J. Am. Ceram. Soc. 50, 132 (1967).
16. Ganz, E., Xiong, F., Hwang, I., and Golovchenko, J., Phys. Rev. B, 43, 7316 (1991).
17. Ganz, E., Theiss, S.K., Hwang, I., and Golovchenko, J., Phys. Rev. Lett. 68, 1567 (1992).
18. Farley, R.W., Ph.D. Thesis, University of Colorado, 1990.

Dynamics of Laser Ablation and Vaporization of Lead Zirconate Titanate: Target Effects

  • R.E. Leuchtner (a1), J.S. Horwitz (a1) and D.B. Chrisey (a1)


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed