Hostname: page-component-7479d7b7d-68ccn Total loading time: 0 Render date: 2024-07-13T19:08:41.587Z Has data issue: false hasContentIssue false

Dynamics of Ferroelectric and Nematic Liquid Crystals Confined in Porous Matrices

Published online by Cambridge University Press:  15 February 2011

Fouad M. Aliev*
Affiliation:
Department of Physics and Materials Research Center, PO BOX 23343, University of Puerto Rico, San Juan, PR 00931-3343, USA
Get access

Abstract

We performed dielectric spectroscopy measurements to study dynamics of collective modes of ferroelectric (FLC) and molecular motion of nematic (NLC) liquid crystals with polar molecules confined in silica macroporous and microporous glasses with average pore sizes of 1000 Å (volume fraction of pores 40%) and 100 Å (27%) respectively. For FLC the Goldstone and the soft modes are found in macropores. The rotational viscosity associated with the soft mode is about 10 times higher in pores than in the bulk. These modes are not detected in micropores although low frequency relaxation is present. The last one probably is not connected with the nature of liquid crystal but is associated with surface polarization effects typical for two component heterogeneous media. The difference between the dynamics of orientational motion of the polar molecules of NLC in confined geometries and in the bulk is qualitatively determined by the total energy Fs of the interaction between molecules and the surface of the pore wall, which is found Fs ≈ 102erg/cm2.

Type
Research Article
Copyright
Copyright © Materials Research Society 1995

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Awschalom, D.D., Warnock, J., Phys.Rev., B 35, 6779 (1987).Google Scholar
2. Molecular Dynamics in Restricted Geometries, ed. by Klafter, J. and Drake, J.M. (Wiley, New York, 1989).Google Scholar
3. Drake, J.M., Klafter, J., Physics Today 43(5), 46, (1990).Google Scholar
4. Jackson, C.L. and McKenna, G., J.Chem.Phys., 93, 9002, (1990).Google Scholar
5. Liu, G., Li, Y., Jonas, J., J.Chem.Phys., 95, 6892, (1991).Google Scholar
6. Thompson, P.A., Grest, G.S., Phys.Rev.Lett., 68, 3448, (1992).Google Scholar
7. Goh, M.C., Goldburg, W.I., Knobler, Ch. M., Phys.Rev.Lett., 58, 1008, (1987); S.B. Dierker, P. Wiltzius, Phys.Rev.Lett., 66, 1185, (1991); B.J. Frisken, D.S. Cannell, Phys.Rev.Lett., 69, 632, (1992).Google Scholar
8. Aliev, F.M., Goldburg, W., Wu, X-I., Phys.Rev.E. 47, R3874, (1993).Google Scholar
9. Dynamics in Small Confining Systems, edited by Drake, J.M., Klafter, J., Kopelman, R. and Awschalom, D.D., Material Research Society Symposium Prosidings, v.290, (Material Research Society, Pittsburgh, 1993).Google Scholar
10. Schuller, J., Mel'nichenko, Yu.B., Richert, R., Fisher, E.W., Phys.Rev.Lett., 73, 2224, (1994).Google Scholar
11. Miano, K., Phys.Rev.Lett., 43, 51, (1976); B. Jerome, Rep.Prog.Phys., 54, 391, (1991).Google Scholar
12. Armitage, D., Price, F.P., Chem.Phys.Lett., 44, 305 (1976), MCLC, 44, 33, (1978), M. Kuzma, M.M. Labes, Chem.Phys.Lett., 44, 100, (1983); G.S. Iannacchione, G. Crawford, S. Zumer, J.W. Doane, D. Finotello, Phys.Rev.Lett., 71, 2595, (1993).Google Scholar
13. Tripathi, S., Rosenblatt, C., and Aliev, F.M., Phys.Rev.Lett., 72, 2725, (1994).Google Scholar
14. Bellini, T., Clark, N.A., Muzny, Ch. D., Wu, L., Garland, C.W., Schaefer, D.W., Oliver, B.J., Phys. Rev.Lett., 69, 788, (1992); N.A. Clark, T. Bellini, R.M. Malzbender, B.N. Thomas, A.G. Rappaport, C.D. Muzny, D.W. Schaefer, L. Hrubesh, Phys. Rev.Lett. 71, 3505, (1993).Google Scholar
15. Aliev, F.M., Breganov, M.N., Soy. Phys. JETP, 68, 70, (1989); F.M. Aliev, MCLC, 243, 91, (1994); F.M. Aliev, J. Kelly, Ferroelectrics, 151, 263, (1994).Google Scholar
16. Wu, X-I, Goldburg, W.I., Liu, M.X., Xue, J.Z., Phys.Rev.Lett., 69, 470, (1992).Google Scholar
17. Blinc, R., Zeks, B., Phys.Rev.,A18, 740, (1978).Google Scholar
18. Clark, N.A., Meyer, R., Appl.Phys.Lett., 22, 493,(1973); M. Delaye, R. Ribotta, G. Durand, Phys.Lett., A44, 139,(1973).Google Scholar