Hostname: page-component-848d4c4894-cjp7w Total loading time: 0 Render date: 2024-06-29T06:29:46.186Z Has data issue: false hasContentIssue false

Dynamical X-ray diffraction analysis of Solid Phase Epitaxy growth of Si1-yCy heterostructures

Published online by Cambridge University Press:  17 March 2011

J. Rodriguez-Viejo
Affiliation:
Grup de Fisica de Materials I. Dep.Fisica.Universidad Autonoma de Barcelona. 08193 Bellatera, Spain
Zakia el-Felk
Affiliation:
Grup de Fisica de Materials I. Dep.Fisica.Universidad Autonoma de Barcelona. 08193 Bellatera, Spain
Get access

Abstract

The strain and damage produced on Si substrates by high-dose ion implantation of Si and C is investigated after thermal treatments by double and triple crystal X-ray diffraction, high ressolution transmission electron microscopy (HRTEM) and Secondary Ion Mass Spectrometry (SIMS). Si implantation (180 keV, 5×1015 Si at cm−2) at liquid nitrogen temperature forms a buried amorphous layer. Annealing at temperatures close to 650°C results in epitaxial films with significant defect recovery. X-ray rocking curves show the existence of interference fringes on the left hand side of the 004 Si peak indicating the presence of tensile strained Si layers due to the generation of Si interstitials during the implantation process. C implantation, at 60 keV, 7×1015 cm−2 and 450°C, in the preamorphized Si wafers results in the growth of Si1-yCy epitaxial films with a low amount of substitutional carbon (y≍ 0.1%). Rapid thermal annealing at 750°C results in highly defective epitaxial films with a maximum carbon content close to 0.4%.The high density of defects is responsible for the partial strain relaxation observed in those layers. The amount of substitutional Si also decreases drastically with increasing temperature. Profile fitting of rocking curves using dynamical X-ray theory is used to estimate the C concentration and the strain and disorder profiles of the heterostructures.

Type
Research Article
Copyright
Copyright © Materials Research Society 2001

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Senz, S., Plobl, A., Gösele, U., Zerlauth, S., Stangl, J., Bauer, G., Appl. Phys. A 67, 147150 (1998).Google Scholar
2. Mitchell, T.O., Hoyt, J.L., Gibbons, J.F., Appl. Phys. Lett. 71, 1688–1670 (1997).Google Scholar
3. Strane, J.W., Lee, S.R., Stein, H.J., Picraux, S.T., Katanabe, J.K., Mayer, J.W., J. Appl. Phys. 79, 637646 (1996).Google Scholar
4. Isomae, S., Ishiba, T., Ando, T., Tmura, M., J. Appl. Phys. 74, 38153820 (1993).Google Scholar
5. Millita, S., Servidori, M., J. Appl. Phys. 79, 82798284 (1996).Google Scholar
6. Wie, C.R., Tombrello, T.A., Vreeland, T., J. Appl. Phys. 59, 37433746 (1986).Google Scholar
7. Kelires, P.C., Phys. Rev. B 55, 87858790 (1997).Google Scholar
8. Fewster, P.F., J. Appl. Cryst. 25, 714723 (1992).Google Scholar
9. Tersoff, J., Phys. Rev. Lett. 64, 17571760 (1990).Google Scholar