Hostname: page-component-8448b6f56d-c47g7 Total loading time: 0 Render date: 2024-04-24T20:22:41.652Z Has data issue: false hasContentIssue false

Dynamic Transition in Proteins and DNA: Role of the Solvent

Published online by Cambridge University Press:  01 February 2011

A. P. Sokolov*
Affiliation:
Department of Polymer Science, The University of Akron, Akron, OH 44325–3909
Get access

Abstract

Hydrated proteins and DNA demonstrate a dynamic transition at temperatures TD∼200–230K. Sharp slowing down of protein functions (rate of biochemical reactions) was observed at the same temperature range. These results suggest a direct relationship between the dynamic transition and onset of biochemical activities of proteins. However, the microscopic nature of the dynamic transition in biomolecules remains poorly understood. This contribution presents an overview of neutron scattering and simulations data analyzing dynamics of proteins and DNA. We show that the dynamic transition is related to a “slow” relaxation process that appears in the experimental frequency window at temperatures above TD. Moreover, we show that the dynamic crossover in the solvents controls the activation of the slow process in biological macromolecules. Microscopic details of the slow process and of the dynamic transition are discussed.

Type
Research Article
Copyright
Copyright © Materials Research Society 2005

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Doster, W., Cusack, S., Petry, W., Nature 337, 754 (1989).Google Scholar
2. Iben, I. E., et al., Phys. Rev. Lett. 62, 1916 (1989).Google Scholar
3. Ferrand, M., Dianoux, A.J., Petry, W., Zaccai, G., Proc. Natl. Ac. Sci. USA 90, 9668 (1993).Google Scholar
4. Lichtenegger, H., Doster, W., Kleinert, T., Birk, A., Sepiol, B., Vogl, G., Biophys. J. 76, 414 (1999).Google Scholar
5. Tsai, A.M., Neumann, D.A., and Bell, L.N., Biophys. J. 79, 27282732 (2000).Google Scholar
6. Sokolov, A.P., Gregory, R.B., “Internal Dynamics of Proteins and DNA: Analogy to Glass-Forming Systems”, In: “Neutrons in Biology – Techniques and Applications”, Eds. Fitter, J., Gutberlet, T., Katsaras, J. (Springer, 2004, in print). http://people.web.psi.ch/gutberlet/Contributions/Sokolov.pdf Google Scholar
7. Parak, F.G., Rep. Prog. Physics 66, 103 (2003).Google Scholar
8. Rasmussen, B.F., et al., Nature 357, 423 (1992).Google Scholar
9. Parak, F. and Knapp, E. W., Pro. Natl. Acad. Sci. 81, 7088 (1984).Google Scholar
10. Daniel, R. M. et al., Biophys. J. 75, 2504 (1998).Google Scholar
11. Dunn, R. V. et al., Biochem. J. 346, 355 (2000).Google Scholar
12. Sokolov, A. P., Grimm, H., Kisliuk, A., Dianoux, A.J., J. Biological Physics 27, 313 (2001).Google Scholar
13. Caliskan, G., Kisliuk, A., Sokolov, A., J. Non-Cryst. Sol. 307–310, 868 (2002).Google Scholar
14. Cordone, L., Ferrand, M., Vitrano, E., Zaccai, G., Biophys. J. 76, 1043 (1999).Google Scholar
15. Rupley, J.A. and Careri, G., Advances in Protein Chemistry 41, 37 (1991);Google Scholar
Rupley, J. A., P., Yang, H., and Tollin, G., ACS Symposium Series, American Chemical Society, 127, 111 (1980).Google Scholar
16. Doster, W., Cusack, S., Petry, W., Phys.Rev. Lett. 65, 1080 (1990).Google Scholar
17. Sokolov, A.P., Grimm, H., Kahn, R., J. Chem. Phys. 110, 7053 (1999).Google Scholar
18. Fitter, J., Lechner, R.E., Dencher, N.A.: Biophys. J. 73, 2126 (1997).Google Scholar
19. Perez, J., Zanotti, J.M., Durand, D., Biophysical J. 77, 454 (1999).Google Scholar
20. Roh, J.H., et al., Phys. Rev. Lett. (submitted).Google Scholar
21. Gotze, W., Sjogren, L., Rep. Prog. Phys. 55, 241 (1992). See also, Transp.Theory and Stat. Physics 24 (1995), Special issue devoted to Relaxation Kinetics in Supercooled Liquids – Mode Coupling Theory and Its Experimental Tests.Google Scholar
22. Stefen, W., Patkowski, A., Glaser, H., Meier, G., Fischer, E.W., Phys. Rev. E 49, 2992 (1994).Google Scholar
23. Becker, T., Hayward, J.A., et al., Biophys. J. 87, 1436 (2004).Google Scholar
24. Sokolov, A.P., Hurst, J., Quitmann, D., Phys. Rev. B 51, 12865 (1995).Google Scholar
25. Sokolov, A.P., J. Non-Cryst. Solids 235–237, 190 (1998).Google Scholar
26. Tarek, M., Tobias, D.J., Phys. Rev. Lett. 88, 138101 (2002).Google Scholar
27. Tournier, A. L., Xu, J., Smith, J.C., Biophysical J. 85, 1871 (2003).Google Scholar
28. Colmenero, J., et al., J. Phys. Cond. Matter 11, A363 (1999).Google Scholar
29. Tournier, A.L., Smith, J.C., Phys. Rev. Lett. 91, 208106 (2003).Google Scholar
30. Beece, D., Eisenstein, L., Frauenfelder, H., et al., Biochemistry 19, 5147 (1980).Google Scholar