Skip to main content Accessibility help

Dynamic Transition in Proteins and DNA: Role of the Solvent

  • A. P. Sokolov (a1)


Hydrated proteins and DNA demonstrate a dynamic transition at temperatures TD∼200–230K. Sharp slowing down of protein functions (rate of biochemical reactions) was observed at the same temperature range. These results suggest a direct relationship between the dynamic transition and onset of biochemical activities of proteins. However, the microscopic nature of the dynamic transition in biomolecules remains poorly understood. This contribution presents an overview of neutron scattering and simulations data analyzing dynamics of proteins and DNA. We show that the dynamic transition is related to a “slow” relaxation process that appears in the experimental frequency window at temperatures above TD. Moreover, we show that the dynamic crossover in the solvents controls the activation of the slow process in biological macromolecules. Microscopic details of the slow process and of the dynamic transition are discussed.



Hide All
1. Doster, W., Cusack, S., Petry, W., Nature 337, 754 (1989).
2. Iben, I. E., et al., Phys. Rev. Lett. 62, 1916 (1989).
3. Ferrand, M., Dianoux, A.J., Petry, W., Zaccai, G., Proc. Natl. Ac. Sci. USA 90, 9668 (1993).
4. Lichtenegger, H., Doster, W., Kleinert, T., Birk, A., Sepiol, B., Vogl, G., Biophys. J. 76, 414 (1999).
5. Tsai, A.M., Neumann, D.A., and Bell, L.N., Biophys. J. 79, 27282732 (2000).
6. Sokolov, A.P., Gregory, R.B., “Internal Dynamics of Proteins and DNA: Analogy to Glass-Forming Systems”, In: “Neutrons in Biology – Techniques and Applications”, Eds. Fitter, J., Gutberlet, T., Katsaras, J. (Springer, 2004, in print).
7. Parak, F.G., Rep. Prog. Physics 66, 103 (2003).
8. Rasmussen, B.F., et al., Nature 357, 423 (1992).
9. Parak, F. and Knapp, E. W., Pro. Natl. Acad. Sci. 81, 7088 (1984).
10. Daniel, R. M. et al., Biophys. J. 75, 2504 (1998).
11. Dunn, R. V. et al., Biochem. J. 346, 355 (2000).
12. Sokolov, A. P., Grimm, H., Kisliuk, A., Dianoux, A.J., J. Biological Physics 27, 313 (2001).
13. Caliskan, G., Kisliuk, A., Sokolov, A., J. Non-Cryst. Sol. 307–310, 868 (2002).
14. Cordone, L., Ferrand, M., Vitrano, E., Zaccai, G., Biophys. J. 76, 1043 (1999).
15. Rupley, J.A. and Careri, G., Advances in Protein Chemistry 41, 37 (1991);
Rupley, J. A., P., Yang, H., and Tollin, G., ACS Symposium Series, American Chemical Society, 127, 111 (1980).
16. Doster, W., Cusack, S., Petry, W., Phys.Rev. Lett. 65, 1080 (1990).
17. Sokolov, A.P., Grimm, H., Kahn, R., J. Chem. Phys. 110, 7053 (1999).
18. Fitter, J., Lechner, R.E., Dencher, N.A.: Biophys. J. 73, 2126 (1997).
19. Perez, J., Zanotti, J.M., Durand, D., Biophysical J. 77, 454 (1999).
20. Roh, J.H., et al., Phys. Rev. Lett. (submitted).
21. Gotze, W., Sjogren, L., Rep. Prog. Phys. 55, 241 (1992). See also, Transp.Theory and Stat. Physics 24 (1995), Special issue devoted to Relaxation Kinetics in Supercooled Liquids – Mode Coupling Theory and Its Experimental Tests.
22. Stefen, W., Patkowski, A., Glaser, H., Meier, G., Fischer, E.W., Phys. Rev. E 49, 2992 (1994).
23. Becker, T., Hayward, J.A., et al., Biophys. J. 87, 1436 (2004).
24. Sokolov, A.P., Hurst, J., Quitmann, D., Phys. Rev. B 51, 12865 (1995).
25. Sokolov, A.P., J. Non-Cryst. Solids 235–237, 190 (1998).
26. Tarek, M., Tobias, D.J., Phys. Rev. Lett. 88, 138101 (2002).
27. Tournier, A. L., Xu, J., Smith, J.C., Biophysical J. 85, 1871 (2003).
28. Colmenero, J., et al., J. Phys. Cond. Matter 11, A363 (1999).
29. Tournier, A.L., Smith, J.C., Phys. Rev. Lett. 91, 208106 (2003).
30. Beece, D., Eisenstein, L., Frauenfelder, H., et al., Biochemistry 19, 5147 (1980).

Dynamic Transition in Proteins and DNA: Role of the Solvent

  • A. P. Sokolov (a1)


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed