Hostname: page-component-8448b6f56d-cfpbc Total loading time: 0 Render date: 2024-04-25T02:13:42.133Z Has data issue: false hasContentIssue false

Dynamic Light Scattering in 5CB Confined in Disordered Porous Media

Published online by Cambridge University Press:  10 February 2011

Fouad M. Aliev
Affiliation:
Department of Physics and Materials Research Center, PO BOX 23343, University of Puerto Rico, San Juan, PR 00931-3343, USA
Vladimir V. Nadtotchi
Affiliation:
Department of Physics and Materials Research Center, PO BOX 23343, University of Puerto Rico, San Juan, PR 00931-3343, USA
Get access

Abstract

We performed dynamic and static light scattering measurements in nematic LC (5CB) confined in silica porous glasses with average pore sizes of 1000 A˚ (volume fraction of pores 40%) and 100 A˚ (27%). The experiments show significant changes in physical properties of confined LC. Nematic-isotropic phase transition temperature TNI is depressed by 0.6°C in 1000 A˚ pores compared to that bulk value and this phase transition was not detected at all in 100 A˚ pores. We found that even about 20°C below bulk melting temperature the relaxational processes in confined LC were not frozen. Slow relaxation process which does not exist in the bulk LC and wide spectrum of relaxation times (10−8 –)s appear in both 100 A˚ and 1000 A˚. In 100 A˚ pores slow relaxation exists even at T corresponding to the bulk isotropic phase. Our data can not be described using the standard form of dynamical scaling variable (t/r) but they obey activated dynamical scaling with the scaling variable x = lnt/lnr.

Type
Research Article
Copyright
Copyright © Materials Research Society 1996

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Awschalom, D.D., Warnock, J., Phys.Rev., B 35, 6779 (1987).Google Scholar
2. Molecular Dynamics in Restricted Geometries, edited by Klafter, J. and Drake, J.M. (Wiley, New York, 1989).Google Scholar
3. Drake, J.M., Klafter, J., Physics Today 43(5), 46, (1990).Google Scholar
4. Jackson, C.L. and McKenna, G., J.Chem.Phys., 93, 9002, (1990).Google Scholar
5. Liu, G., Li, Y., Jonas, J., J.Chem.Phys., 95, 6892, (1991).Google Scholar
6. Thompson, P.A., Grest, G.S., Phys.Rev.Lett.,68, 3448, (1992).Google Scholar
7. Goh, M.C., Goldburg, W.I., Knobler, Ch. M., Phys.Rev.Lett., 58, 1008, (1987); S.B. Dierker, P. Wiltzius, ibid., 66, 1185, (1991); B.J. Frisken, D.S. Cannell, ibid., 69, 632, (1992).Google Scholar
8. Aliev, F.M., Goldburg, W., Wu, X-L., Phys.Rev.E. 47, R3874, (1993).Google Scholar
9. Armitage, D., Price, F.P., Chem.Phys.Lett., 44, 305 (1976), MCLC, 44, 33, (1978), M. Kuzma, M.M. Labes, ibid., 44, 100, (1983); G.S. Iannacchione, G. Crawford, S. Zumer, J.W. Doane, D. Finotello, Phys.Rev.Lett., 71, 2595, (1993); S.Tripathi, C. Rosenblatt, and F.M. Aliev, Phys.Rev.Lett., 72, 2725, (1994); F.M. Aliev, MCLC, 243, 91, (1994); F.M. Aliev, J. Kelly, Ferroelectrics, 151, 263, (1994).Google Scholar
10. Bellini, T., Clark, N.A., Muzny, Ch. D., Wu, L., Garland, C.W., Schaefer, D.W., Oliver, B.J., Phys. Rev.Lett., 69, 788, (1992).Google Scholar
11. Wu, X-L., Goldburg, W.I., Liu, M.X., Xue, J.Z., Phys.Rev.Lett., 69, 470, (1992).Google Scholar
12. Goldburg, W.I., Aliev, F.M., Wu, X-L., Physica A 213, 61, (1995).Google Scholar
13. Bellini, T., Clark, N.A., Schaefer, D.W., Phys. Rev.Lett., 74, 2740, (1995).Google Scholar
14. de Gennes, P.G. and Prost, J., The Physics of Liquid Crystals (second ed.), Clarendon Press, Oxford, 1993.Google Scholar
15. Williams, G., Non-Cryst, J.. Solids.131133, 1 (1991).Google Scholar