Hostname: page-component-848d4c4894-wg55d Total loading time: 0 Render date: 2024-05-10T17:07:45.577Z Has data issue: false hasContentIssue false

Dynamic Consolidation of Ceramic Powders: Practicalities, Problems, and Prospects*

Published online by Cambridge University Press:  21 February 2011

William H. Gourdin*
Affiliation:
Lawrence Livermore National Laboratory Livermore, CA 94550
Get access

Abstract

I present an assessment of the technological potential of shock wave consolidation of ceramic powders as a technique for producing well-bonded, uniform, crack-free monoliths. Current compaction methods are briefly reviewed and the characteristics of the consolidated material are presented. The shock and release histories experienced by powder compacts in simple compaction assemblies are complex and I conclude that such simple assemblies are unlikely to yield structurally sound bodies. Control of the stress history over the entire loading cycle is necessary if the tensile stresses which develop during release are to be reduced to acceptable levels. Such exacting control is difficult to achieve, and becomes increasingly difficult as the peak stresses are increased. The powder must therefore be sufficiently plastic at moderate stresses to permit densification and bonding of the compact without destruction of the compact during release. Not all ceramic powders will satisfy this criterion. Local microstructural modification, including interfacial melting, is limited by the fine particle sizes and large surface areas of many ceramic powders. Production of cohesive, crack-free bodies thus depends upon a complex interplay between shock history, material properties, and powder characteristics which is poorly understood. I conclude that the technology of dynamic consolidation of ceramic powders will be difficult to develop and will have limited applications.

Type
Research Article
Copyright
Copyright © Materials Research Society 1984

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

*

Work performed under the auspices of the U.S. Department of Energy by the Lawrence Livermore National Laboratory under Contract W-7405-Eng-48.

References

REFERENCES

1. Gourdin, W. H., to be published in J. Appl. Phys., Jan. 1984.Google Scholar
2. Raybould, D., Morris, D. G., and Cooper, G. A., J. Mat. Sci. 14, 2523 (1979).Google Scholar
3. Raybould, D. in: Shock Waves and High-Strain-Rate Phenomena in Metals, Meyers, M. A. and Murr, L. E., eds. (Plenum, NY, 1981) pp. 895911.Google Scholar
4. Raybould, D., J. Mat. Sci. 16, 589 (1981).Google Scholar
5. Morris, D. G., Metal Science 15, 116 (1981).Google Scholar
6. Gourdin, W. H., “Local Microstructural Modification in Dynamically Consolidated Metal Powders, University of California”, lawrence Livemiore National laboratory, Report UCRL-89793.Google Scholar
7. Marsh, S. P., ed., “LASL Shock Hugoniot Data,” University of California Press, Berkeley, 1980.Google Scholar
8. Erlich, D. C. and Curran, D. R., Report DNA 3961 F-6, Stanford Research Insititue, Menlo Park, CA, 1976;Google Scholar
8a see also Seanan, L., Tokheim, R. E., and Curran, D. R., Report DNA 3412F, Stanford Research Insititute, Menlo Park, CA, 1974.Google Scholar
9. Trunin, R. F., Simakov, G. V., and Podurets, M. A., Izv. Earth Physics 12, 1318 (1974).Google Scholar
10. Trofimov, V. S., Adadurov, G. A., Pershin, S. V., and Dremin, A. N., Fizika Goreniya i Vzryva 4, 244 (1968).Google Scholar
11. Batsanov, S. S. in: Shock Waves in Condensed Matter - 1981, APS Conference Proceedings No. 78, Nellis, W. J., Seaman, L., and Graham, R. A., eds. (American Institute of Physics, 1982) pp. 1426.Google Scholar
12. Morosin, B. and Graham, R. A.,eds. (American Institute of Physics, 1982) pp. 1426 , pp. 4–13.Google Scholar
13. Golden, J., Williams, F., Morosin, B., Venturini, E. L., and Grahan, R. A., eds. (American Institute of Physics, 1982) pp. 1426 pp. 72–76.Google Scholar
14. Venturini, E. L., Morosin, B., and Graham, R. A., eds. (American Institute of Physics, 1982) pp. 1426, pp. 77–81.Google Scholar
15. Keck, J. D., Hankey, D. L., Graham, R. A., and Morosin, B., American Institute of Physics, 1982) pp. 1426, pp. 77–81. pp. 82–86.Google Scholar
16. Kieffer, S. W., J. Geophys. Res. 76, 5449 (1971).Google Scholar
17. Lysne, P. C.,J. Geophys. Res. 76, 5449 (1971) 75, 4375 (1970).Google Scholar
18. Dianov, M. D., Zlatin, N. A., Mochalov, S. M., Pugachev, G. S. and Rosomakho, L. Kh., Sov. Tech. Phys. Lett. 2, 207 (1976).Google Scholar
19. Roman, O. V. and Gorobtsov, V. G. in: Shock Waves and High-Strain-Rate Phencmena in Metals, Concepts and Applications, Meyers, M. A. and Murr, L. E., eds. (Plenum, NY, 1981) pp. 829842.Google Scholar
20. Staver, A. M., Plenum, NY, 1981) pp. 829842., pp. 865–880.Google Scholar
21. The patent literature is too extensive to provide a complete listing here. The following is only a selection: Balchan, A. S. and Cowan, G. R., U.S. Patents 3608014 (1971) and 3667911 (1972);Google Scholar
21a Simons, C. C., 3220103 (1965);Google Scholar
21b Bergmann, O. R., 3178807 (1965).Google Scholar
22. Prumner, R., Ber. Dt. Keram. Ges. 50, 75 (1973).Google Scholar
23. Prummer, R. and Ziegler, G., Ber. Dt. Keram. Ges. 50, 75 (1973)51, 343 (1974).Google Scholar
24. Hoenig, C. L. and Yust, C. S., Am. Ceram. Soc. Bull. 60, 1175 (1981).Google Scholar
25. Gourdin, W. H., Echer, C. J., Cline, C. F., and Tanner, L. E. in: Proceedings of the 7th International Conference on High Energy Rate Fabrication, Blazynski, T. Z., ed. (University of Leeds, 1981) pp. 233241.Google Scholar
26. Gourdin, W. H., Weinland, S. L., Echer, C. J. and Huffsmith, S. L. in: Emergent Process Methods for High Technology Ceramics, (Proceedings of the 19th University Conference on Ceramic Science, North Carolina State University, Nov. 8–10, 1982, to he published).Google Scholar
27. See, for example, Decarli, P. S. and Meyers, M. A. in: Shock Waves and High-Strain-Rate Phenomena in Metals, Concepts and Applications, Meyers, M. A. and Murr, L. E., eds. (Plenum, NY, 1981), pp. 341374.CrossRefGoogle Scholar
28. Gourdin, W. H. and Weinland, S. L. in: Proceedings of the American Physical Society 1983 Topical Conference on Shock Waves in Condensed Matter, Asay, J. R., Straub, G. K., and Grahan, R. A., eds. (Santa Fe, NM, July 18–21, 1983, to be published).Google Scholar
29. Mitomo, M. and Setaka, N., J. Mat. Sci. 16, 851 (1981).CrossRefGoogle Scholar
30. Heard, H. C. and Cline, C. F., J. Mat. Sci. 15, 1889 (1980).CrossRefGoogle Scholar
31. Yust, C. S. and Harris, L. A. in: Shock Waves and High-Strain-Rate Phenomena in Metals, Concepts and Applications, Meyers, M. A. and Murt, L. E., eds. (Plenum, NY, 1981), pp. 881894.CrossRefGoogle Scholar
32. Davison, L., Webb, D. M., and Graham, R. A. in: Shock Waves in Condensed Matter - 1981, AIP Conference Proceedings No. 78 (American Institute of Physics, 1982) pp. 6771.Google Scholar
33. Gourdin, W. H. and Weinland, S. L., “The Dynamic Response of Unsintered Aluminum Nitride Powder: Hugoniot Measurement and Pressure-Density Relationships,” University of California, Lawrence Livermore National Laboratory, report in preparation.Google Scholar
34. Carslaw, H. S. and Jaeger, J. C., Conduction of Heat in Solids, Second Edition (Oxford, 1959) pp. 75 and 242.Google Scholar
35. Akashi, T., Sawaoka, A., Saito, S., and Araki, M., Japan J. Appl. Phys. 15, 891 (1976).CrossRefGoogle Scholar
36. Sato, T., Ishii, T., and Setaka, N., Conm. Amer. Cer. Soc., Oct. 1982, p. C–162.Google Scholar
37. Setaka, N. and Sekikawa, Y., J. Mat. Sci. 16, 1728 (1981).Google Scholar