Hostname: page-component-8448b6f56d-t5pn6 Total loading time: 0 Render date: 2024-04-24T06:07:02.262Z Has data issue: false hasContentIssue false

Dynamic Behaviour of Lead Nanoparticles in A Dielectric Matrix

Published online by Cambridge University Press:  21 February 2011

P. Cheyssac
Affiliation:
Laboratoire de Physique de la Matière Condensée, URA 190, Université de Nice Sophia Antipolis, 06108 Nice Cedex 2, France
R. Kofman
Affiliation:
Laboratoire de Physique de la Matière Condensée, URA 190, Université de Nice Sophia Antipolis, 06108 Nice Cedex 2, France
P. G. Merli
Affiliation:
Istituto di Chimica e Tecnologie dei Materiali e dei Componenti dell′ Elettronica del Consiglio Nazionale delle Ricerche, Via di Castagnoli 1, I- 40126 Bologna, Italy
A. Migliori
Affiliation:
Istituto di Chimica e Tecnologie dei Materiali e dei Componenti dell′ Elettronica del Consiglio Nazionale delle Ricerche, Via di Castagnoli 1, I- 40126 Bologna, Italy
A. Stella
Affiliation:
Dipartimento di Fisica A. Volta, Università degli Studi di Pavia, Via A. Bassi 6, 27100 Pavia, Italy
Get access

Abstract

In this paper we present electron microscopy results near and below the melting temperature, both in dark field and high resolution mode, of lead nanoparticles embedded in a dielectric matrix of amorphous SiOx. Three different size dependent regimes are distinguished. Indications of solid particles rotations as well as of a new phenomenon amenable to spontaneous solid-liquid phase fluctuations will be briefly discussed.

Type
Research Article
Copyright
Copyright © Materials Research Society 1994

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 - Buffat, Ph. and Borel, J.P., Phys. Rev. 13, 2287 (1976)Google Scholar
2 - Lereah, Y., Deutscher, G., Cheyssac, P. and Kofman, R., Europhysics Letters 12, 709 (1990)Google Scholar
3 - Ercolessi, F., Andreoni, W. and Tosatti, E., Phys. Rev. Letters 66, 911, (1991)Google Scholar
4 - Chen, X.J., Levi, A.C. and Tosatti, E., II Nuovo Cimento 13D (1991) 919 CrossRefGoogle Scholar
5 - Kofman, R., Cheyssac, P., Aouaj, A., Lereah, Y., Deutscher, G., Ben-David, T., Pénisson, J.M. and Bourret, A., Surf. Sci. in pressGoogle Scholar
6 - Dash, J.G., Contemporary Physics, 30, 89, (1989)Google Scholar
7 - Frenken, J.W.M., Maree, P.M.J. and Veen, J.F. Van der, Phys. Rev. B 34, 7506, (1986)Google Scholar
8 - Gladkikh, N.I., Chizhik, S.P., Larin, V.L., Grigoreva, L.K. and Sukhov, V.N., Izv. Acad. Nauk SSSR Met. 5, 196, (1982)Google Scholar
9 - Garrigos, R., Cheyssac, P. and Kofman, R., Z. Phys. D 12,497 (1989)Google Scholar
10 - The reflectivity rise at the transition temperature is generally considered a very reliable indicator of the solid to liquid transition. (See Auston, D.H. et al, in Appl. Phys. Lett. 34, 365, (1978)).Google Scholar
11 - Beaglehole, D, J. of Crystal Growth, 112, 663, (1991)Google Scholar
12 - Broughton, J.Q. and Gilmer, G.H., Acta Metall. 31, 854, (1983)Google Scholar
13 - The calculation was performed under the assumption of spherical particles (as confirmed by DF and HREM data) and of a relatively not too strong perturbation at RT due to the presence of the matrix instead of the vapour. It was checked in any case that variations up to 8% in the free energies due to such perturbation do not change the main features of the curves in fig 6.Google Scholar