Hostname: page-component-848d4c4894-cjp7w Total loading time: 0 Render date: 2024-06-28T09:37:30.788Z Has data issue: false hasContentIssue false

Dry ETCH Induced Defects and H Passivation of GaAs Surfaces Produced by CH4/H2/Ar Plasmas

Published online by Cambridge University Press:  22 February 2011

G. F. McLane
Affiliation:
Army Research Laboratory, Ft. Monmouth, NJ 07703
W.R. Buchwald
Affiliation:
Army Research Laboratory, Ft. Monmouth, NJ 07703
Get access

Abstract

An investigation was performed of surface region etch-induced damage of GaAs magnetron reactive ion etched in CH4/H2/Ar gas mixtures for 10% and 20% Ar concentrations. Schottky barrier I-V measurements showed that changes in surface potential (ϕb) upon etching and subsequent annealing can be explained by a combination of H passivation effects and As removal from the surface region. Changes in Schottky barrier ideality factor (n) can be explained by the presence of etch-induced surface region defects such as donor-like As vacancies and deep level recombination centers, both of which are passivated by H. Schottky barrier C-V measurements indicated that H passivation extends about 0.3 μm below the surface. Rapid thermal annealing at 400°C for 30 s was effective in removing most of the H passivation effects.

Type
Research Article
Copyright
Copyright © Materials Research Society 1994

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. McLane, G.F., Meyyappan, M., Lee, H., and Buchwald, W., J. Vac. Sci. Technol. A9, 935 (1991).Google Scholar
2. Meyyappan, M., McLane, G.F., Lee, H.S., Eckart, D., Namaroff, M., and Sasserath, J., J. Vac. Sci. Technol. B10, 1215 (1992).Google Scholar
3. McLane, G.F., Meyyappan, M., Lee, H.S., Cole, M.W., Eckart, D.W., Lareau, R.T., Namaroff, M., and Sasserath, J., J. Vac. Sci. Technol. B 11, 333 (1993).Google Scholar
4. Law, V.J. and Jones, G.A.C., Semicond. Sci. Technol. 4, 833 (1989).Google Scholar
5. Pearton, S.J., Chakrabarti, U.K., Perley, A.P., Hobson, W.S., and Geva, M., J. Electrochem. Soc. 138, 1432 (1991).Google Scholar
6. Pereira, R., Hove, M. Van, Raedt, W. De, Jansen, Ph., Borghs, G., Jonckheere, R., and Rossum, M. Van, J. Vac. Sci. Technol. B9, 1978 (1991).Google Scholar
7. McLane, G.F., Cole, M.W., Eckart, D.W., Cooke, P., Moerkirk, R., and Meyyappan, M., J. Vac. Sci. Technol. A11, 1753 (1993).Google Scholar
8. Contolini, R. and D'Asaro, L., J. Vac. Sci. Technol. B 4, 706 (1986).Google Scholar
9. Paccagnella, A., Callegari, A., Letta, E., and Gasser, M., Appl. Phys. Lett. 55, 259 (1989).Google Scholar
10. Pearton, S.J., Chakrabarti, U.K., and Hobson, W.S., J. Appl. Phys. 66, 2061 (1989).Google Scholar
11. Lu, Z., Schmidt, M.T., Chen, D., Osgood, R.M. Jr, Holber, W.M., Podlesnik, D.V., and Forster, J., Appl. Phys. Lett. 58, 1143 (1991).Google Scholar
12. McLane, G.F., Buchwald, W.R., Casas, L., Cole, M.W., to be published in J. Vac. Sci. Technol. AGoogle Scholar
13. Chiang, S. Y and Pearson, G.L., J. Appl. Phys. 46, 2986 (1975).Google Scholar
14. Cheung, R., Thoms, S., Mclntyre, I., Wilkinson, C.D., and Beaumont, S.P., J. Vac. Sci. Technol. B6, 1911 (1988).Google Scholar
15. Hayes, T.R., Dautremont-Smith, W.C., Luftman, H.S., and Lee, J.W., Appl. Phys. Lett. 55, 56 (1989).Google Scholar