Hostname: page-component-848d4c4894-m9kch Total loading time: 0 Render date: 2024-05-12T12:05:03.627Z Has data issue: false hasContentIssue false

Dry and Wet Etching for Group III – Nitrides

Published online by Cambridge University Press:  10 February 2011

I. Adesida
Affiliation:
Department of Electrical and Computer Engineering, University of Illinois, Urbana-Champaign, IL 61801
C. Youtsey
Affiliation:
Department of Electrical and Computer Engineering, University of Illinois, Urbana-Champaign, IL 61801
A. T. Ping
Affiliation:
Department of Electrical and Computer Engineering, University of Illinois, Urbana-Champaign, IL 61801
F. Khan
Affiliation:
Department of Electrical and Computer Engineering, University of Illinois, Urbana-Champaign, IL 61801
L. T. Romano
Affiliation:
Xerox PARC, Palo Alto, CA 94304
G. Bulman
Affiliation:
CREE Research, Inc., Durham, NC 27713
Get access

Abstract

The group-III nitrides have become versatile semiconductors for short wavelength emitters, high temperature microwave transistors, photodetectors, and field emission tips. The processing of these materials is significant due to the unusually high bond energies that they possess. The dry and wet etching methods developed for these materials over the last few years are reviewed. High etch rates and highly anisotropic profiles obtained by inductively-coupled-plasma reactive ion etching are presented. Photoenhanced wet etching provides an alternative path to obtaining high etch rates without ion-induced damage. This method is shown to be suitable for device fabrication as well as for the estimation of dislocation densities in n-GaN. This has the potential of developing into a method for rapid evaluation of materials.

Type
Research Article
Copyright
Copyright © Materials Research Society 1999

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1] Nakamura, S., Mukai, T., and Senoh, M., Appl. Phys. Lett. 64, 1687 (1994).Google Scholar
[2] Nakamura, S., Senoh, M., Nagahama, S., Iwasa, N., Yamada, T., Matsushita, T., Kiyoku, H., and Sugimoto, S., Appl. Phys. Lett. 68, 2105 (1996).Google Scholar
[3] Ping, A. T., Adesida, I., Boutros, K., and Redwing, J., unpublished.Google Scholar
[4] Sheppard, S., Doverspike, K., Pribble, W., Allen, S., Palmour, J., Kehias, L., Jenkins, T., Paper V.B.-5. Device Research Conference (Charlolltesville, VA, 1998).Google Scholar
[5] McCarthy, L., Kozodoy, P., Rodwell, M., DenBaars, S., and Mishra, U., Compound Semiconductor 4 (8), 16 (1998).Google Scholar
[6] Adesida, I., Ping, A.T., Youtsey, C., Dow, T., Khan, M. Asif, Olson, D.T., and Kuznia, J.N., Appl. Phys. Lett. 65, 889 (1994).Google Scholar
[7] Pearton, S.J., Abernathy, C.R., Ren, F., and Lothian, J.R., J. Appl. Phys 76, 1210 (1994).Google Scholar
[8] Ping, A.T., Adesida, I., and Khan, M. Asif, Appl. Phys. Lett. 67, 1250 (1995).Google Scholar
[9] Ping, A.T., Youtsey, C., Adesida, I., Khan, M. Asif, and Kuznia, J.N., J. Electron. Mat. 24, 229 (1995).Google Scholar
[10] Lee, J.-W., Park, H.-S., Park, Y.-J., Yoo, M.-C., Kim, T.-I., Kim, H.-S., and Yeom, G.-Y., MRS Symp. Proc. 468, 373 (1997).Google Scholar
[11] Basak, D., Verdú, M., Montojo, M.T., Sánchez-García, M.A., Sáinchez, F.J., Munoz, E., and Calleja, E., Semicond. Sci. Tech. 12, 1654 (1997).Google Scholar
[12] Lee, H., Oberman, D.B., and Harris, J.S. Jr, Appl. Phys. Lett. 67, 1754 (1995).Google Scholar
[13] Adesida, I., Mahajan, A., Andideh, E., Khan, M. Asif, Olson, D.T., and Kuznia, J.N. Appl. Phys. Lett. 63, 2777 (1993).Google Scholar
[14] Ping, A.T., Adesida, I., Khan, M. Asif, and Kuznia, J.N., Electron. Lett. 30, 1895 (1994).Google Scholar
[15] Lin, M.E., Fan, Z.F., Ma, Z., Allen, L.H., and Morkoq, H., Appl. Phys. Lett. 64, 887 (1994).Google Scholar
[16] Pearton, S.J., Abernathy, C.R., Ren, F., Lothian, J.R., Wisk, P.W., and Katz, A., J. Vac. Sci. Technol. A 11, 1772 (1993).Google Scholar
[17] Pearton, S.J., Abernathy, C.R., and Vartuli, C.B., Electron. Lett. 30, 1985 (1994).Google Scholar
[18] Zhang, L., Ramer, J., Brown, J., Zheng, K., Lester, L.F., and Hersee, S.D., Appl. Phys. Lett. 68, 367 (1996).Google Scholar
[19] Shul, R.J., Kilcoyne, S.P., Crawford, M.H., Parmeter, J.E., Vartuli, C.B., Abernathy, C.R., and Pearton, S.J., Appl. Phys. Lett. 66, 1761 (1995).Google Scholar
[20] Vartuli, C.B., Pearton, S.J., Lee, J.W., MacKenzie, J.D., Abernathy, C.R., and Shul, R.J., J. Vac. Sci. Technol. B 15, 98 (1997).Google Scholar
[21] Vartuli, C.B., Pearton, S.J., Lee, J.W., Hong, J., MacKenzie, J.D., Abernathy, C.R., and Shul, R.J., Appl. Phys. Lett. 69, 1426 (1996).Google Scholar
[22] Cho, H., Vartuli, C.B., Donovan, S.M., Mackenzie, J.D., Abernathy, C.R., Pearton, S.J., Shul, R.J., and Constantine, C., J. Electron. Mat. 27, 166 (1998).Google Scholar
[23] Shul, R.J., Willison, C.G., Bridges, M.M, Han, J., Lee, J.W., Pearton, S.J., Abernathy, C.R., Mackenzie, J.D., Donovan, S.M., Zhang, L., and Lester, L.F., J. Vac. Sci. Technol. A 16, 1621 (1998).Google Scholar
[24] Vartuli, C.B., Lee, J.W., MacKenzie, J.D., Donovan, S.M., Abernathy, C.R., Pearton, S.J., Shul, R.J., Constantine, C., Barratt, C., Poyakov, A.Y., Shin, M., Skowronski, M., Mat. Res. Soc. Symp. Proc. 468, 393 (1997).Google Scholar
[25] Shul, R.J., McClellan, G.B., Casalnuovo, S.A., Rieger, D.J., Pearton, S.J., Constantine, C., Barratt, C., Karlicek, R.F. Jr, Tran, C., and Schurman, M., Appl. Phys. Lett. 69, 1119 (1996).Google Scholar
[26] Lee, Y.H., Kim, H.S., Yeom, G.Y., Lee, J.W., Yoo, M.C., and Kim, T.I., J. Vac. Sci. Technol. A 16, 1478 (1998).Google Scholar
[27] Smith, S.A., Wolden, C.A, Bremser, M.D., Hanser, A.D., Davis, R.F., and Lampert, W.V., Appl. Phys. Lett. 25, 3631 (1997).Google Scholar
[28] Leonard, R.T. and Bedair, S.M., Appl. Phys. Lett. 68, 794 (1996).Google Scholar
[29] Gillis, H.P., Choutov, D.A., Martin, K.P., Bremser, M.D., and Davis, R.F., J. Electron. Mat. 26, 301 (1997).Google Scholar
[30] Kneissi, M., Bour, D.P., Johnson, N.M., Romano, L.T., Krusor, B.S., Donaldson, R., Walker, J., and Dunnrowicz, C., Apl. Phys. Lett. 72, 1539 (1998).Google Scholar
[31] Binet, F., Duboz, J.Y., Laurent, N., Bonnat, C., Collot, P., Hanauer, F., Briot, O., and Aulombard, R.L., Apl. Phys. Lett. 72, 960 (1998).Google Scholar
[32] Khan, F., Youtsey, C., and Adesida, I., unpublished.Google Scholar
[33] Cho, H., Vartulli, C., Donovan, S., Abernathy, C., Pearton, S., Shul, R., and Constantine, C., J. Vac. Sci. Technol. A16, 1631 (1998).Google Scholar
[34] Shul, R., Willison, C., Bridges, M., Han, J., Lee, J., Pearton, S., Abernathy, C., MacKenzie, J., Donovan, S., Zhang, L., and Lester, L., J. Vac. Sci. Technol. A16, 1631 (1998).Google Scholar
[35] Pearton, S.J., Lee, J.W., MacKenzie, J.D., Abernathy, C.R., and Shul, R.J., Appl. Phys. Lett. 67, 2329 (1995).Google Scholar
[36] Ping, A.T., Schmitz, A.C., Khan, M. Asif, Chen, Q., Yang, J.W., and Adesida, I., J. Electron. Mater. 26, 266 (1997).Google Scholar
[37] Fang, Z., Mohammad, S.N., Kim, W., Aktas, O., Botchkarev, A.E., and Morkoß, H. [Appl. Phys. Lett. (USA) vol.68 (1996) p.1672]Google Scholar
[38] Ping, A.T., Chen, Q., Yang, J.W., Khan, M. Asif, and Adesida, I., J. Electron. Mater. 27, 261 (1998).Google Scholar
[39] Morimoto, Y., J. Electrochem. Soc. 121, 1384 (1974).Google Scholar
[40] Mileham, J.R., Pearton, S.J., Abernathy, C.R., MacKenzie, J.D., Shul, R.J., and Kilcoyne, S.P., J. Vac. Sci. Technol. A14, 836 (1996).Google Scholar
[41] Pearton, S., Abernathy, C., Ren, F., Lothian, J., Wisk, P., and Katz, A., J. Vac. Sci. Technol. 11, 1772 (1993).Google Scholar
[42] Guo, Q.X., Kato, O., and Yoshida, A., J. Electrochem. Soc. 139, 2008 (1992).Google Scholar
[43] Mileham, J.R., Pearton, S.J., Abernathy, C.R., and MacKenzie, J.D., Appl. Phys. Lett. 67, 1119 (1995)Google Scholar
[44] Minskey, M.S., White, M., and Hu, E.L., Appl. Phys. Lett. 68, 1531 (1996).Google Scholar
[45] Youtsey, C., Adesida, I., and Bulman, G., Appl. Phys. Lett. 71, 2151 (1997).Google Scholar
[46] Youtsey, C., Adesida, I., Romano, L.T., and Bulman, G., Appl. Phys. Lett. 72, 560 (1998).Google Scholar
[47] Cho, H., Auh, K., Shul, R., Donovan, S., Abernathy, C., Lambers, E., Ren, F., and Pearton, S., J. Electron. Mater. (in press).Google Scholar
[48] Lu, H., Wu, Z., and Bhat, I., J. Electrochem. Soc. 144, L8 (1997).Google Scholar
[49] Peng, L.-H., Chuang, C., Ho, J., Huang, C. and Chen, C.-Y., Appl. Phys. Let. 72, 939 (1997)Google Scholar
[50] Rotter, T., Uffmann, D., Ackermann, J., Aderhold, J., Stemmer, J., and Graul, J. Mat. Res. Soc. Symp. Proc. 482 (1997).Google Scholar
[51] Youtsey, C., Adesida, I., and Bulman, G., J. Electron. Mater. 27, 282 (1998).Google Scholar
[52] O, J., Zory, P.S. and Bour, D.P., SPIE Proc. 3002, 117 (1997).Google Scholar
[53] Youtsey, C., Romano, L.T., and Adesida, I., Appl. Phys. Lett. 73, 797 (1998).Google Scholar
[54] Weimann, N.G., Eastman, L.F., Doppalapudi, D., Ng, H.M. and Moustakas, T.D., J. Appl. Phys. 83, 3656 (1998).Google Scholar
[55] Ping, A.T., Khan, M. Asif, and Adesida, I., Semicond. Sci. Technol. 12, 133 (1997).Google Scholar