Hostname: page-component-848d4c4894-v5vhk Total loading time: 0 Render date: 2024-06-25T15:32:41.162Z Has data issue: false hasContentIssue false

Doping and Oxidation Effects in Raman Spectra of Manganites

Published online by Cambridge University Press:  10 February 2011

V. B. Podobedov
Affiliation:
NIST Optical Technology Division, Gaithersburg, MD 20899, USA
A. Weber
Affiliation:
NIST Optical Technology Division, Gaithersburg, MD 20899, USA
G. Dezanneau
Affiliation:
LMGP (UMR CNRS 2856) ENS de Physique de Grenoble, 38402 St Martin d'Heres, France
S. Pignard
Affiliation:
LMGP (UMR CNRS 2856) ENS de Physique de Grenoble, 38402 St Martin d'Heres, France
J. Kreizel
Affiliation:
LMGP (UMR CNRS 2856) ENS de Physique de Grenoble, 38402 St Martin d'Heres, France
H. Vincent
Affiliation:
LMGP (UMR CNRS 2856) ENS de Physique de Grenoble, 38402 St Martin d'Heres, France
Get access

Abstract

Raman scattering from LayRxMnO3-δ compounds (single crystals, ceramics, films) was studied as a function of kind (R) and amount (x) of dopant as well as of oxygen deficit (δ). For x = 0.1 to 0.55, a nearly linear Raman shift of the Ag mode from 240 to 125 cm−1 was observed in Srdoped compounds. While the intensity of disorder-induced Raman bands was found to be sensitive to the oxygen content, the symmetry allowed related Raman modes exhibit the changes in the frequency. As an indication of deposition conditions, lowering of a symmetry of the film structures with respect to single crystals and ceramics was detected. We discuss the physical nature of the observed effects and show how Raman data can be used for the optical characterization of manganite samples.

Type
Research Article
Copyright
Copyright © Materials Research Society 1999

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Rao, C.N.R., Cheethman, A.K. and Mahesh, R., Chem. Mat. 8, 2421 (1996).10.1021/cm960201vGoogle Scholar
2. Schiffer, P., Ramirez, A.P., Bao, W., and Cheong, S.-W., Phys. Rev. Lett. 75, 3336 (1995).10.1103/PhysRevLett.75.3336Google Scholar
3. Maignan, A., Michel, C., Hervieu, M., and Raveau, B., Solid State Commun. 101 277 (1991).10.1016/S0038-1098(96)00533-9Google Scholar
4. Pignard, S., Vincent, H., Senateur, J.P., Pierre, J., and Abrutis, A., J. Appl. Phys. 82, 4445 (1997).10.1063/1.366174Google Scholar
5. Goyal, A., Rajeswari, M., Shreekala, R., Lofland, S.E., Bhagat, S.M., Boettcher, T., Kwon, C., Ramesh, R., and Venkatesan, T., Appl. Phys. Lett. 71, 2535 (1997).10.1063/1.120427Google Scholar
6. Podobedov, V.B., Weber, A., Romero, D.B., Rice, J.P., and Drew, H.D., Solid State Commun., 105, 589 (1998); Phys. Rev. B 58, 43 (1998).10.1016/S0038-1098(97)10185-5Google Scholar
7. Podobedov, V.B., Romero, D.B., Weber, A., Rice, J.P., Schreekala, R., Rajeswari, M., Ramesh, R., Venkatesan, T., and Drew, H.D., Appl. Phys. Lett. 73 3217 (1998).10.1063/1.122723Google Scholar
8. Archibald, W., Zhou, J.-S., and Goodenough, J.B., Phys. Rev. B 53, 14445 (1995).10.1103/PhysRevB.53.14445Google Scholar
9. Nowotny, J. and Rekas, M., J. Am. Ceram. Soc. 81 67 (1998).10.1111/j.1151-2916.1998.tb02297.xGoogle Scholar
10. DeLeonGuevara, A.M., Berthet, P., Berthon, J., Millot, F., Revcolevschi, A., Anane, A., Dupas, C., LeDang, K., Renard, J.P., and Veillet, P., Phys. Rev. B 56, 6031 (1997).10.1103/PhysRevB.56.6031Google Scholar
11. Pignard, S., Senateur, J.P., Vincent, H., Appl. Phys. Lett., 73 999 (1998).10.1063/1.122065Google Scholar
12. Vincent, H., Audier, M., Pignard, S., Dezanneau, G., Phys. Rev B (submitted).Google Scholar
13. Kreisel, J., Pignard, S., Dezanneau, G., Vincent, H., Abello, L., Lucazeau, G. in XVIth ICORS Proceedings, J. Wiley & Sons Edt, 570 (1998).Google Scholar