Hostname: page-component-848d4c4894-p2v8j Total loading time: 0.001 Render date: 2024-05-13T22:01:11.325Z Has data issue: false hasContentIssue false

Doping, Activation of Impurities, and Defect Annihilation in Gan by High Pressure Annealing

Published online by Cambridge University Press:  10 February 2011

T. Suski
Affiliation:
UNIPRESS, High Pressure Research Center, Polish Academy of Sciences, 01-142 Warszawa, POLAND, tadek@unipress.waw.pl
J. Jun
Affiliation:
UNIPRESS, High Pressure Research Center, Polish Academy of Sciences, 01-142 Warszawa, POLAND, tadek@unipress.waw.pl
M. Leszczynski
Affiliation:
UNIPRESS, High Pressure Research Center, Polish Academy of Sciences, 01-142 Warszawa, POLAND, tadek@unipress.waw.pl
H. Teisseyre
Affiliation:
UNIPRESS, High Pressure Research Center, Polish Academy of Sciences, 01-142 Warszawa, POLAND, tadek@unipress.waw.pl
I. Grzegory
Affiliation:
UNIPRESS, High Pressure Research Center, Polish Academy of Sciences, 01-142 Warszawa, POLAND, tadek@unipress.waw.pl
S. Porowski
Affiliation:
UNIPRESS, High Pressure Research Center, Polish Academy of Sciences, 01-142 Warszawa, POLAND, tadek@unipress.waw.pl
J. M. Baranowski
Affiliation:
UNIPRESS, High Pressure Research Center, Polish Academy of Sciences, 01-142 Warszawa, POLAND, tadek@unipress.waw.pl Institute of Experimental Physics, Warsaw University, 00-668 Warszawa, POLAND
A. Rocket
Affiliation:
Materials Research Labratory, University of Illinois at Urbana-Champaign, 1 101 W. Springfield Ave., Urbana, IL 61801, USA
S. Strite
Affiliation:
IBM Research Division, Zurich Research Laboratory, Saumerstrasse 4, Ruschlikon CH-8803, SWITZERLAND
A. Stonert
Affiliation:
Institute of Electronic Materials Technology, 01-919 Warszawa, POLAND
A. Turos
Affiliation:
Institute of Electronic Materials Technology, 01-919 Warszawa, POLAND Soltan Institute of Nuclear Research, 00-681 Warsaw, POLAND
H. H. Tan
Affiliation:
Departmet of Electronic Materials and Engineering, Research School of Physical Sciencesand Engineering, The Australian National University, Canberra ACT 0200, AUSTRALIA
J. Swilliams
Affiliation:
Departmet of Electronic Materials and Engineering, Research School of Physical Sciencesand Engineering, The Australian National University, Canberra ACT 0200, AUSTRALIA
C. Jagadish
Affiliation:
Departmet of Electronic Materials and Engineering, Research School of Physical Sciencesand Engineering, The Australian National University, Canberra ACT 0200, AUSTRALIA
Get access

Abstract

GaN semiconductor is characterized by strong bonding and high vapor pressure of nitrogen. The strong bonds limit an efficiency of annealing procedures required for variety of semiconductor technologies, for example, post-implantation annealing, or doping by diffussion. Maximum temperatures employed up to now (at ambient pressure) in GaN annealing have not exceeded about 1100°C. A desired increase of annealing temperatures would cause a decomposition of GaN unless an elevated pressure of N2 is supplied. In this work, we report onapplication of high pressure annealing procedures (temperatures up to 1550°C and pressures up to 16 kbar) which enabled us to study variation of the properties of epitaxial films and bulk crystal of GaN. In particular, we discuss the following results obtained using high pressure annealing: i) structural quality improvement and increase of the thermal strain in as grown epitaxial layers of GaN/A12O3, The annealing at above 1300°C resulted in the decrease of the X-ray rocking curve width from about 700 arc sec. down to 470 arc sec., ii) drastic increase of bandedge (bound exciton) photoluminescence intensity iii) enhancement in removal of implant damage, iv) increase of diffusivity of Zn and Mg atoms (introduced by implantation and/or diffusion from external source). For Zn in epitaxial layers of GaN/A12O3 a diffusion starts at 1200–1250°C, v) enhancement of the blue-photoluminescence intensity in Zn and Mg implanted GaN. The performed experiments give an evidence of the importance of the defect (dislocations) in diffusion of Zn and Mg in the GaN semiconductor.

Type
Research Article
Copyright
Copyright © Materials Research Society 1998

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1] Nakamura, S., Mukai, T., and Senoh, M., Appl. Phys. Lett. 64, 1687 (1994).Google Scholar
[2] Amano, H., Asahi, T., and Akasaki, I, Jpn. J. Appl. Phys. 29, L205 (1990).Google Scholar
[3] Nakamura, S., Senoh, M., Nagahama, S., Iwasa, N., Yamada, T., Matsushita, T., Sugimotu, Y., and Kiyoku, H., Appl. Phys. Lett. 70, 1417 (1997).Google Scholar
[4] Khan, M.A., Bhattari, A., Kuznia, J.N., and Olson, D.T., Appl. Phys. Lett. 63, 1214 (1993).Google Scholar
[5] Binari, S.C., Rowland, L.B., Kruppa, W., Kelner, G., Doverspike, K., and Gaskill, D.K., Electron. Lett. 30, 1248 (1994).Google Scholar
[6] Van Vechten, J.A., Phys. Rev. B7, 1479 (1973).Google Scholar
[7] Karpinski, J., Jun, J., and Porowski, S., J. Cryst. Growth 66, 1 (1984).Google Scholar
[8] Zolper, J.C., Shul, R.J., Baca, A.G., Wilson, R.G., Pearton, S.J., and Stall, R.A., Appl. Phys. Lett. 68, 2273 (1966).Google Scholar
[9] Pankove, J.I. and Hutchby, J.A., J. Appl. Phys. 47, 5387 (1976).Google Scholar
[10] Zolper, J.C. and Shul, R.J., MRS Bulletin, p. 36, February 1997.Google Scholar
[11] Strite, S., Pelzmann, A., Suski, T., Leszczynski, M., Jun, J., Rockett, A., Kamp, M., and Ebeling, K.J., MRS Internet J. Nitride Semicond. Res. 2, 15 (1997).Google Scholar
[12] Zolper, J.C., Han, J., Van Deusen, S.B., Crawford, M.H., Biefeld, R.M., Jun, J., Suski, T., Baranowski, J.M., and Pearton, S.J., this Symposium.Google Scholar
[13] Wilson, R.G., Vartuli, C.B., Abernathy, C.R., Pearton, S.J., and Zavada, J.M., Solid-State Electron. 38, 1329 (1995).Google Scholar
[14] Strite, S., Epperlein, P.W., Dommann, A., Rockett, A., Broom, R.F., Mater. Res. Soc. Symp. Proc. 395, 795 (1996).Google Scholar
[15] Zolper, J.C., Crawford, M. Hagerott, Pearton, S.J., Abernathy, C.R., Vartuli, C.B., Ramer, J., Hersee, S.D., Yuan, C., and Stall, R.A., Mater. Res. Soc. Symp. Proc. MRS Fall Meeting, Boston, 1995, edited by Ponce, F.A., Dupuis, R.D., Nakamura, S., and Edmond, J.A., 395 (Pittsburgh, 1996) p. 801.Google Scholar
[16] Nakamura, S., Iwasa, N., Senoh, M., and Mukai, T., Jpn. J. Appl. Phys. 31, 1258 (1992).Google Scholar
[17] Ponce, F.A., Galloway, A.A., Cherns, D., Goetz, W., and Kern, R.S., in Proc. The 2nd Int. Conf on Nitride Semiconductors (ICNS'97), Tokushima, 1997, paper M2-6.Google Scholar
[18] Porowski, S., Grzegory, I., and Jun, J., in High Pressure Chemical Synthesis, edited by Jurczak, J. and Baranowski, B. (Elsevier, Amsterdam, 1989), p. 21.Google Scholar
[19] Liliental-Weber, Z., Ruvimov, S., Kisielowski, Ch., Chen, Y., Swider, W., Washborn, J., Newman, N., Gassmann, A., Liu, X., Schloss, L., Weber, E. R., Grzegory, I., Bockowski, M., Jun, J., Suski, T., Pakula, K., Baranowski, J., Porowski, S., Amano, H., Akasaki, I., Mat. Res. Soc. Symp. Proc. MRS Fall Meeting, Boston, 1995, edited by Ponce, F.A., Dupuis, R.D., Nakamura, S., and Edmond, J.A., 395 (Pittsburgh, 1996) p. 351.Google Scholar
[20] Pearton, S.J., Vartuli, C.B., Zolper, J.C., Yuan, C., and Stall, R.A., Appl. Phys. Lett. 67, 1435 (1995).Google Scholar
[21] Domagala, J., unpublished.Google Scholar
[22] Leszczynski, M., Suski, T., Perlin, P., Teisseyre, H., Grzegory, I., Bockowski, M., Jun, J., Porowski, S., and Major, J., J. Phys. D28, 1 (1995).Google Scholar
[23] Kisielowski, C., Kruger, J., Ruvimov, S., Suski, T., Ager, J.W. III, Jones, E., Liliental-Weber, Z., Rubin, M., and Weber, E.R., Phys. Rev. B54, 17745 (1996).Google Scholar
[24] Saarinen, K., Laine, T., Kuisma, S., Nissila, J., Hautojarvi, P., Dobrzynski, L., Baranowski, J.M., Pakula, K., Stepniewski, R., Wojdak, M., Wysmolek, A., Suski, T., Leszczynski, M., Grzegory, I., and Porowski, S., Phys. Rev. Lett. 79, 3030 (1997).Google Scholar