Hostname: page-component-76fb5796d-zzh7m Total loading time: 0 Render date: 2024-04-26T14:48:32.384Z Has data issue: false hasContentIssue false

Doped Gels for Optical Limiting Applications.

Published online by Cambridge University Press:  15 February 2011

Marc Brunel
Affiliation:
Groupe d'Optique Non-Linéaire, Institut d'Optique Théorique et Appliquée, Unité associée 14, Centre National de la Recherche Scientifique, Université d'Orsay-Paris XI, Bâtiment 503, B. P. 147, 91403 Orsay Cedex, France
Michael Canva
Affiliation:
Groupe d'Optique Non-Linéaire, Institut d'Optique Théorique et Appliquée, Unité associée 14, Centre National de la Recherche Scientifique, Université d'Orsay-Paris XI, Bâtiment 503, B. P. 147, 91403 Orsay Cedex, France
Alain Brun
Affiliation:
Groupe d'Optique Non-Linéaire, Institut d'Optique Théorique et Appliquée, Unité associée 14, Centre National de la Recherche Scientifique, Université d'Orsay-Paris XI, Bâtiment 503, B. P. 147, 91403 Orsay Cedex, France
Frédéric Chaput
Affiliation:
Groupe de Chimie du Solide, Laboratoire de Physique de la Matière Condensée, Unité associée 1254-D, Centre National de la Recherche Scientifique, École Polytechnique, 91128 Palaiseau Cedex, France
Laurent Malier
Affiliation:
Groupe de Chimie du Solide, Laboratoire de Physique de la Matière Condensée, Unité associée 1254-D, Centre National de la Recherche Scientifique, École Polytechnique, 91128 Palaiseau Cedex, France
Jean-Pierre Boilot
Affiliation:
Groupe de Chimie du Solide, Laboratoire de Physique de la Matière Condensée, Unité associée 1254-D, Centre National de la Recherche Scientifique, École Polytechnique, 91128 Palaiseau Cedex, France
Get access

Abstract

Aluminophthalocyanine and fullerene were trapped in solid transparent matrices using the sol-gel process. The covalent bonding to the matrix improved the chemical stability of the fullerene doped sample. Solid state optical limiting at 532 nm, mainly due to reverse saturable absorption processes, was observed with such samples. The non-linear transmission threshold was typically about 10 mJ/cm2 and an induced density of 1.6 was observed with three orders of magnitude greater illumination. Fluorescent decay measurements support the choice of a three energy level absorption model for the process, which allows indirect measurement of the excited-state absorption.

Type
Research Article
Copyright
Copyright © Materials Research Society 1995

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Blau, W., Byrne, H. and Dennis, W.M.: Opt. Commun. 56, 25 (1985).Google Scholar
2. Hoffman, R.C., Stetyick, K.A., Potember, R.S. and McLean, D.G.: J. Opt. Soc. Am. B 6, 772 (1989).Google Scholar
3. Coulter, D.R., Miskowski, V.M., Perry, J.W., Wei, T.H., Van Stryland, E.W. and Hagan, D.J.: SPIE “Materials for Optical Switches, Isolators, and Limiters” 1105,42 (1989).Google Scholar
4. MacLean, D.G., Sutherland, R.L., Brant, M.C., Brandelik, D.M., Fleitz, P.A. and Pottenger, T., Optics Letters 18, 858, (1993).Google Scholar
5. Mansour, K., Alvarez, D. Jr. Kelly, , Perry, J., Choony, I., Marder, Seth R. and Perry, J.W., SPIE “Organic and Biological Optoelectronics”, 1853, preprint, (1993).Google Scholar
6. Chaput, F., Boilot, J.P., Devreux, F., Canva, M., Georges, P. and Brun, A., Better Ceramics Through Chemistry, M.J., Hampden-Smith, W.G., Klemperer and C.J., Brinker Eds., Material Research Society, 271, 663, (1992).Google Scholar
7. Brinker, C.J. and Scherer, G.W., Sol-Gel Science (Academic Press, Inc, USA).Google Scholar
8. Devreux, F., Boilot, J.P., Chaput, F., Lecomte, A., Phys. Rev. 41, 6901, (1990) and F. Devreux, J.P. Boilot, F. Chaput, L. Malier, M.A.V. Axelos, Phys. Rev. E 47, 2689, (1993).Google Scholar
9. Avnir, D., Braun, S. and Ottolenghi, M., Encapsulation of molecules and enzymes in Sol-Gel glasses, in: Supramolecular Architecture ACS 499, ed. T., Bein, American Chemical Society, Washington, DC 1992.Google Scholar
10. Chaput, F., Riehl, D., Levy, Y. and Boilot, J.P., Chem. Mater 5 (1993) 589.Google Scholar
11. Canva, M., Georges, P., Brun, A., Chaput, F., and Boilot, J.P.: SPIE 1758, 538 (1992).Google Scholar
12. Fuqua, P.D., Mansour, K., Alvarez, P., Marder, S.R., Perry, J.W. and Dunn, B., SPIE “Sol-gel Optics” 1758, 499 (1992).Google Scholar
13. Bentivegna, F., Canva, M., Georges, P., Brun, A., Chaput, F., Malier, L. and Boilot, J.P.: Appl. Phys. Lett. 62, 1721 (1993).Google Scholar
14. Brunel, M., Luyer, F. Le, Canva, M., Brun, A., Chaput, F., Malier, L., Boilot, J.P., Appl. Phys. B. 58, 443 (1994).Google Scholar
15. Hirsh, A., Li, Q. and Wudl, F., Ang. Chem. Int. Ed. Engl. 30, 1309, (1991).Google Scholar
16. Li, D. and Swanson, B. I., Langmuir 9, 3341, (1993).Google Scholar
17. Kosonocky, W.F. and Harrison, S. E.: J. Appl. Phys. 37, 4789 (1966).Google Scholar