Skip to main content Accessibility help

Dopant Redistribution During Silicide Formation

  • I. Ohdomari (a1), K. Konuma (a1), M. Takano (a1), T. Chikyow (a1), H. Kawarada (a1), J. Nakanishi (a1) and T. Ueno (a1)...


After the review of dopant redistribution phenomena observed during formation of near noble metal suicides, we describe the results of our recent experiments to get a better understanding of a mechanism of the dopant redistribution phenomenon in Si substrates. The key factors to understand the dopant redistribution are dopant segregation at the suicide/ Si interface due to lower solubility limit of dopants in suicides, enhanced diffusion of dopants into the Si substrate at much lower temperatures than the ordinary thermal diffusion, and electrical activation of the redistributed dopants. The results of As and carrier concentration measurements before and after Pd2Si formation to make clear the third factor show that the electrical activity of the redistributed As atoms in Si is strongly dependent on the initial activity before Pd2Si formation which is controlled by the temperature for the pre-annealing of As implanted Si.

Shrinkage of extrinsic dislocation loops introduced by As implantation and subsequent annealing have been observed after Pd2Si formation, which is a good evidence of vacancy generation during Pd2Si formation. The role of the vacancies and interstitials on the second factor, the enhanced diffusion, has also been discussed. Finally we list a few issues to be answered in future by more detailed works in order to get a complete understanding of the redistribution phenomenon.



Hide All
1. Shannon, J.M., Appl. Phys. Lett. 25(1), 75(1974) ; 31 (10), 708(1977) ; Solid-State Electron.19,537(1976)
2. for examples Grove, A.S., Leistiko, O. Jr, and Sah, C.T., J. Appl. Phys. 35 (9), 2695(1964)
3. Wittmer, M. and Seidel, T.E., J. Appl. Phys. 49 (12), 5827(1978)
4. Muta, H., Jpn. J. Appl. Phys. 17 (6), 1089(1978)
5. Kikuchi, A. and Sugaki, S., J. Appl. Phys. 53 (5), 3690(1982)
6. Bindell, J.B., Moller, W.M. and Labada, E.F., IEEE Trans. Electron. Devices ED–27 (2) 420(1980)
7. Wittmer, M. and Tu, K.N., Phys. Rev. B 29 (4), 2010(1984)
8. Lew, P.W. and Helms, C.R., J. Appl. Phys. 56 (12), 3418(1984)
9. Cohen, S.S., Piacente, P.A., Gildenblat, G., and Brown, D.M., J. Appl. Phys. 53(12) 8856 (1982)
10. Wittmer, M., Ting, C.-Y., and Yu, K.N., Thin Solid Films 104, 191(1983)
11. Kikuchi, A., J. Appl. Phys. 54 (7), 3998(1983)
12. Ohdomari, I., Suguro, K., Akiyama, M., Maeda, T., Tu, K.N., Kimura, I., and Yoneda, K., Thin Solid Films 89, 349(1982)
13. Ohdomari, I., Tu, K.N., Suguro, K., Akiyama, M., Kimura, I., and Yoneda, K., Appl. Phys. Lett. 38 (12), 1015(1981)
14. Wittmer, M., Ting, C.-Y., Ohdomari, I., and Tu, K.N., J. Appl. Phys. 53 (10), 6781 (1982)
15. Wittmer, M., Ting, C.-Y., and Tu, K.N., J. Appl. Phys. 54(2), 699(1983)
16. Ohdomari, I., Akiyama, M., Maeda, T., Hori, M., Takebayashi, C., Ogura, A., Chikyo, T., Kimura, I., Yoneda, K., and Tu, K.N., J. Appl. Phys. 56 (10), 2725(1984)
17. Révez, P., Gyimesi, J., and Zsoldos, E., J. Appl. Phys. 54 (4), 1860(1983)
18. to be published
19. Zheng, L.R., Hung, L.S. and Mayer, J.W., J. Appl. Phys. 58 (4), 1505(1985)
20. Ohdomari, I., JAREG “Semiconductor Technologies”,Vol.13 p.267
21. Hirth, J.P. and Lothe, J., Theory of Dislocations(McGraw-Hill, Inc, 1968)p 459


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed