Hostname: page-component-76fb5796d-x4r87 Total loading time: 0 Render date: 2024-04-26T06:01:59.957Z Has data issue: false hasContentIssue false

Dopant Activation And Epitaxial Regrowth in P-Implanted Pseudomorphic Ge0.12Si0.88 Layers on Si (100)

Published online by Cambridge University Press:  15 February 2011

D. Y. C. Lie
Affiliation:
California Institute of Technology, M/S 116–81, Pasadena, CA 91125
T. K. Cams
Affiliation:
University of California, Los Angeles, CA 90024
N. D. Theodore
Affiliation:
D. N. Theodore, Motorola Inc., Mesa, Arizona, AZ 85202
F. Eisen
Affiliation:
California Institute of Technology, M/S 116–81, Pasadena, CA 91125
M.-A. Nicolet
Affiliation:
California Institute of Technology, M/S 116–81, Pasadena, CA 91125
K. L. Wang
Affiliation:
University of California, Los Angeles, CA 90024
Get access

Abstract

A pseudomorphic Ge0.12Si0.88 film 265 nm thick grown on a Si (100) substrate by molecular beam epitaxy was implanted at room temperature with a dose of 1.5 × 1015 cm2 of 100 keV P ions. The projected range of the ions is about 125 nm, which is well within the film thickness. Only the top portion of the Ge0.12Si0.88 layer was amorphized by the implantation. Both implanted and non-implanted samples were subsequently annealed in vacuum for 30 Minutes from 400 °C to 800 °C. Values of electron Hall sheet mobility and concentration in the implanted Ge0.12Si0.88 epilayer were measured after annealing. The solid phase epitaxial regrowth is complete at 550 °C, where the implanted phosphorus reaches - 100 % activation. The regrown Ge0.12Si0.88 layer exhibits inferior crystalline quality to that of the virgin sample and is relaxed, but the non-implanted portion of the film remains pseudomorphic at 550 °C. When annealed at 800 °C, the strain in the whole epilayer relaxes. The sheet electron mobility values measured at room temperature in the regrown samples (Tann ≥ 550 °C) are about 20% less than those of pure Si.

Type
Research Article
Copyright
Copyright © Materials Research Society 1994

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Hong, Q. Z., Zhu, J. G., Mayer, J. W., Xia, W. and Lau, S. S., J. Appl. Phys. 71, 1768 (1992)Google Scholar
2. Paine, D. C., Howard, D. J., Stoffel, N. G., and Horton, J. H., J. Mater. Res. 5, 1023 (1990)Google Scholar
3. Bai, G. and Nicolet, M.-A., J. Appl. Phys. 71, 4227 (1992)Google Scholar
4. Manu, S., Holländer, B., Jäger, W., Kabius, B., Jorke, H. J., and Kasper, E., Nucl. Instr. Mcth. B 39, 405 (1989)Google Scholar
5. Lee, C., Haynes, T. E., Jones, K. S., Appl. Phys. Lett. 62, 501 (1993)Google Scholar
6. Chilton, B. T., Robinson, B. J., Thompson, D. A., Jackman, T. E., and Baribeau, J.-M., Appl. Phys. Lett. 54, 2 (1989)Google Scholar
7. Pai, C. S., Lau, S.S., Suni, I., and Csepregi, L., Appl. Phys. Lett. 47, 1214 (1985)Google Scholar
8. Hong, Stella Q., Hong, Q. Z., and Mayer, J. W., Appl. Phys. Lett. 63, 2053 (1993)Google Scholar
9. Atzmon, Z., Eisenberg, M., Revesz, P., Mayer, J. W., Hong, S. Q., and Schäffer, F., Appl. Phys. Lett. 60, 2243 (1992)Google Scholar
10. Atzmon, Z., Eisenberg, M., Shacham-Diamand, Y., Mayer, J. W. and Schäffer, F., Appl. Phys. Lett. 61, 2902 (1992)Google Scholar
11. Hong, Stella Q., Hong, Q. Z., and Mayer, J. W., J. Appl. Phys. 72, 3821 (1993)Google Scholar
12. Ziegler, J. F., Bicrsack, J. P. and Littmark, U., The Stopping and Range of ions in Matter, (Pergamon Press, London, 1985)Google Scholar
13. Lie, D. Y. C., Vantomme, A., Eisen, F., Nicolet, M.-A., Cams, T. K. and Wang, K. L., J. of Appl. Phys. 74, 6039 (1993)Google Scholar
14. Lie, D. Y. C., Vantomme, A., Eisen, F., Nicolet, M.-A., Arbet-Engels, V., and Wang, K. L., Mater. Res. Soc. Symp. Proc. 262, 1079 (1993)Google Scholar
15. Crowder, B. L. and Morehead, F. F. Jr Appl. Phys. Lett, 14, 313 (1969)Google Scholar
16. Maszara, W. P. and Rozgonyi, G. A., J. Appl. Phys. 60, 2310 (1986)Google Scholar
17. Gyulai, J. in Ion IMplantation - Science and Technology, edited by Ziegler, J. F., (Academic Press, Orlando, 1984), pp 139210.Google Scholar
18. Mayer, J. W., Eriksson, L. and Davis, J. A., Ion Implantation in Semiconductors - Silicon and Germanium, (Academic Press, New York), pp 200208.Google Scholar
19. Masetti, G., Severi, M. and Solmi, S., IEEE, Trans. Electron Devices, 30, 764 (1983)Google Scholar
20. Fisful, Heavily Doped Semicondcutors, (Plenum Press, New York, 1969), p 133.Google Scholar
21. Manku, T. and Nathan, A., IEEE Trans. Electron Dev., 39, 2082 (1992)Google Scholar