Hostname: page-component-8448b6f56d-wq2xx Total loading time: 0 Render date: 2024-04-19T06:42:45.599Z Has data issue: false hasContentIssue false

Domain Imaging, Polarization Hysteresis, and Switching in Nano-Size Ferroelectric Structures

Published online by Cambridge University Press:  10 February 2011

C. Harnagea
Affiliation:
e-mail:charna@mpi-halle.de
A. Pignolet
Affiliation:
Max-Planck-Institut für Mikrostrukturphysik, Weinberg 2, D-06120 Halle (Saale), Germany
M. Alexe
Affiliation:
Max-Planck-Institut für Mikrostrukturphysik, Weinberg 2, D-06120 Halle (Saale), Germany
D. Hesse
Affiliation:
Max-Planck-Institut für Mikrostrukturphysik, Weinberg 2, D-06120 Halle (Saale), Germany
U. Gösele
Affiliation:
Max-Planck-Institut für Mikrostrukturphysik, Weinberg 2, D-06120 Halle (Saale), Germany
Get access

Abstract

A fundamental issue in the physics of ferroelectric memories and piezoelectric devices is to study how their properties scale with the size of the ferroelectric structure. In this work we present results concerning the ferroelectric behavior of structures with lateral sizes in the range 100 nm to 1 μm. The ferroelectric characterization was achieved using the piezoresponse mode of a scanning force microscope. 100 nm patterned PZT polycrystalline structures as well as 200 nm epitaxial SrBi2Ta2O9 grains exhibit distinct ferroelectric hysteresis loops. Fatigue measurements on 500 nm structures of PZT were also performed and are discussed.

Type
Research Article
Copyright
Copyright © Materials Research Society 2000

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Scott, J.F., Alexe, M., Zakharov, N. D., Pignolet, A., Curran, C., and Hesse, D., Integr. Ferroelectr. 21, 1 (1998).Google Scholar
2. Alexe, M., Harnagea, C., Hesse, D., and Gösele, U., Appl. Phys. Lett. 75, 1793 (1999).Google Scholar
3. Pignolet, A., Harnagea, C., James, A. R., Senz, S., Schaefer, C., Zakharov, N. D., and Hesse, D., Proc. Mat. Res. Soc. Symposium 1999: Ferroelectric Thin Films VIII.Google Scholar
4. Franke, K., Besold, J., Haessler, W., and Seegebarth, C., Surf Sci. Lett. 302, L283 (1994).Google Scholar
5. Hidaka, T., Maruyama, T., Saitoh, M., Mikoshiba, N., Shimizu, M., Shiosaki, T., Wills, L. A., Hiskes, R., Dicarolis, S. A., and Amano, J., Appl. Phys. Lett. 68, 2358 (1996).Google Scholar
6. Gruverman, A., Auciello, O., and Tokumoto, H., Integr. Ferroel. 19, 49 (1998).Google Scholar
7. Damjanovic, D., Rep. Prog. Phys. 61, 1267 (1998).Google Scholar
8. Zavala, G., Fendler, J.H., and Trolier-McKinstry, S., J. Appl. Phys. 81, 7480 (1997).Google Scholar
9. It should be noted that this type of “pulsed” hysteresis loop was very recently applied also in usual macroscopic hysteresis measurements. See, for details: Alemany, C., Jimenez, R., Revilla, J., Mendiola, J., and Calazda, M. L., J. Phys. D 32, L79 (1999).Google Scholar
10. Kholkin, A. L., Colla, E. L., Tagantsev, A. K., Taylor, D. V., and Setter, N., AppL Phys. Lett. 68, 2577 (1996).Google Scholar
11. Harnagea, C., Pignolet, A., Alexe, M., Hesse, D. and Gösele, U., Appl. Phys A, in press.Google Scholar
12. Colla, E. L., Tagantsev, A. K., Taylor, D. V., and Kholkin, A. L., Integr. Ferroelectr. 18, 19 (1997).Google Scholar
13. Pignolet, A., Welke, S., Curran, C., Alexe, M., Senz, S., and Hesse, D., Ferroelectr. 202, 285 (1997);Google Scholar
Pignolet, A., Alexe, M., Satyalakshmi, K. M., Senz, S., Hesse, D., and Gösele, U., Ferroelectr. 225, 201 (1998).Google Scholar
14. Franke, K., Huelz, H., and Weihnacht, M., Surf Sci. 416, 59 (1998).Google Scholar