Hostname: page-component-77c89778f8-fv566 Total loading time: 0 Render date: 2024-07-19T16:23:31.335Z Has data issue: false hasContentIssue false

Dispersive Hydrogen Motion and Creation of Light-Induced Defects in Hydrogenated Amorphous Silicon

Published online by Cambridge University Press:  25 February 2011

W. B. Jackson*
Affiliation:
Xerox Research Center, 3333 Coyote Hill Rd., Palo Alto, CA 94304
Get access

Abstract

This paper investigates the application of the dispersive hydrogen diffusion defect kinetic equation for the generation of light-induced defects. Self-limited monomolecular carrier defect generation by dispersive motion can explain the observed t1/3 and the G0.6 dependence where t is the illumination time and G is the illumination intensity as well as the equilibrium defect density as a function of temperature. However, the temperature dependence of the creation rate and compatibility with current degradation experiments remain unresolved problems.

Type
Research Article
Copyright
Copyright © Materials Research Society 1989

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Smith, Z., Aljishi, S., Slobodin, D., Chu, V., Wagner, S., Lenahan, P.M., Arya, R.R., and Bennett, M.S., Phys. Rev. Lett. 57, 2450 (1986)CrossRefGoogle Scholar
2. Kakalios, J., Street, R.A., and Jackson, W.B., Phys. Rev. Lett., 59, 1037 (1987).CrossRefGoogle Scholar
3. Street, R. A., Hack, M., and Jackson, W. B., Phys. Rev. B 37, 4209 (1988)CrossRefGoogle Scholar
4. Jackson, W. B. and Kakalios, J., Advances in Amorphous Semiconductors, edited by Fritzsche, H. (World Scientific, Singapore 1988), p. 247.Google Scholar
5. Jackson, W. B. and Kakalios, J., Phys. Rev. B. 37, 1020 (1988).CrossRefGoogle Scholar
6. Stutzmann, M., Jackson, W. B., and Tsai, C. C., Phys. Rev. B. 32, 23 (1985).CrossRefGoogle Scholar
7. Redfield, D. and Bube, R. H., Appl. Phys. Lett. 54, 1037 (1989).CrossRefGoogle Scholar
8. Redfield, D., Appl. Phys. Lett. 54, 398 (1989).CrossRefGoogle Scholar
9. Jackson, W.B., Phil. Mag. B 59, 103 (1989).Google Scholar
10. Wronski, C. R., Smith, Z E., Aljishi, S., Chu, V., Shephard, K., Shen, D.-S., Schwarz, R., Slobodin, D., and Wagner, S., Stability of Amorphous Silicon Alloy Materials and Devices (AIP Conf. Proc. No. 157), edited by Stafford, B.L. and Sabisky, E. (American Institute of Physics, New York, 1987), p. 171 Google Scholar
11. Jang, J., Kim, T.M., Hyun, J. K., Yoon, J.H., and Lee, C., J. of Non-Crystalline Solids, 59&60, 429 (1983).CrossRefGoogle Scholar
12. Krühler, W., Pfleiderer, H., Plättner, R., and Stetter, W., Optical Effects in Amorphous Semiconductors (AIP Conf. Proc. No. 120), edited by Taylor, P. C. and Bishop, S. G., (American Institute of Phys., New York, 1984), p. 311.Google Scholar
13. Lee, C., Ohlsen, W. D., and Taylor, P. C., 1986a, in Proc. of the 18th Int. Conf. on the Phys. of Semiconductors, edited by Engström, O. (World Scientific, Singapore, 1986), p. 1085.Google Scholar
14. Lee, C., Ohlsen, W. D., and Taylor, P. C., in Materials Issues in Amorphous Semiconductor Technology edited by Adler, D., Hamakawa, Y. and Madan, A., (Mater. Res. Soc. Proc, Pittsburgh, PA 1986), p. 225.Google Scholar
15. Kazanskii, A. G., Milichevich, E. P., and Vavilov, V. S., J. of Non-Crystalline Solids, 97&98, 787 (1987).CrossRefGoogle Scholar
16. Eser, E., J. Appl. Phys. 59, 3508 (1986).CrossRefGoogle Scholar