Hostname: page-component-76fb5796d-9pm4c Total loading time: 0 Render date: 2024-04-27T03:01:29.691Z Has data issue: false hasContentIssue false

Disordering of InGaN/GaN Superlattices After High-Pressure Annealing

Published online by Cambridge University Press:  15 February 2011

M.D. McCluskey
Affiliation:
Department of Physics, Washington State University, Pullman, WA 99164-2814
L.T. Romano
Affiliation:
Xerox PARC, 3333 Coyote Hill Rd., Palo Alto, CA 94304
B.S. Krusor
Affiliation:
Xerox PARC, 3333 Coyote Hill Rd., Palo Alto, CA 94304
D. Hofstetter
Affiliation:
Xerox PARC, 3333 Coyote Hill Rd., Palo Alto, CA 94304
D.P. Bour
Affiliation:
Xerox PARC, 3333 Coyote Hill Rd., Palo Alto, CA 94304
M. Kneissl
Affiliation:
Xerox PARC, 3333 Coyote Hill Rd., Palo Alto, CA 94304
N.M. Johnson
Affiliation:
Xerox PARC, 3333 Coyote Hill Rd., Palo Alto, CA 94304
T. Suski
Affiliation:
Unipress, Ul. Sokolowska 29, 01-142 Warsaw, Poland
J. Jun
Affiliation:
Unipress, Ul. Sokolowska 29, 01-142 Warsaw, Poland
Get access

Abstract

Interdiffusion of In and Ga is observed in InGaN multiple-quantum-well superlattices for annealing temperatures of 1250 to 1400°C. Hydrostatic pressures of up to 15 kbar were applied during the annealing treatments to prevent decomposition of the InGaN and GaN. In as-grown material, x-ray diffraction spectra show InGaN superlattice peaks up to the fourth order. After annealing at 1400°C for 15 min, only the zero-order InGaN peak is observed, a result of compositional disordering of the superlattice. Composition profiles from secondary ion mass spectrometry indicate significant diffusion of Mg from the p-type GaN layer into the quantum well region. This Mg diffusion may lead to an enhancement of superlattice disordering. For annealing temperatures between 1250 and 1300°C, a blue shift of the InGaN spontaneous emission peak is observed, consistent with interdiffusion of In and Ga in the quantum-well region.

Type
Research Article
Copyright
Copyright © Materials Research Society 1999

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Nakamura, S., Senoh, M., Iwasa, N., and Nagahama, S., Jpn. J. Appl. Phys. 34, L797 (1995).Google Scholar
2. Nakamura, S., Senoh, M., Nagahama, S., Iwasa, N., Yamada, T., Matsushita, T., Kiyoko, H., and Sugimoto, Y., Jpn. J. Appl. Phys. 35, L74 (1996).Google Scholar
3.See, for example, Ponce, F.A. and Bour, D.P., Nature 386, 351 (1997).Google Scholar
4. McCluskey, M.D., Romano, L.T., Krusor, B.S., Johnson, N.M., Suski, T., and Jun, J., Appl. Phys. Lett. 73, 1281 (1998).Google Scholar
5. Chang, L.L. and Koma, A., Appl. Phys. Lett. 29, 138 (1976).Google Scholar
6. Hofstetter, D., Maisenhölder, B., and Zappe, H.P., IEEE Journal of Selected Topics in Quantum Electronics 4, 794 (1998).Google Scholar
7. Ho, I-hsiu and Stringfellow, G.B., Appl. Phys. Lett. 69, 2701 (1996).Google Scholar
8. Singh, R., Doppalapudi, D., Moustakas, T.D., and Romano, L.T., Appl. Phys. Lett. 70, 1089 (1997).Google Scholar
9. McCluskey, M.D., Romano, L.T., Krusor, B.S., Bour, D.P., Johnson, N.M., and Brennan, S., Appl. Phys. Lett. 72, 1730 (1998).Google Scholar
10. Suski, T., Jun, J., Leszczyńiski, M., Teisseyre, H., Strite, S., Rockett, A., Pelzmann, A., Kamp, M., and Ebeling, K.J., J. Appl. Phys. 84, 1155 (1998).Google Scholar
11. Laidig, W.D., Holonyak, N. Jr, Camras, M.D., Hess, K., Coleman, J.J., Dapkus, P.D., and Bardeen, J., Appl. Phys. Lett. 38, 776 (1981).Google Scholar
12. Laidig, W.D., Lee, J.W., Chiang, P.K., Simpson, L.W., and Bedair, S.M., J. Appl. Phys. 54, 6382 (1983).Google Scholar
13. Chan, K.S., Li, E.H., and Chan, M.C.Y., IEEE J. Quantum Electron. 34, 157 (1998).Google Scholar