Hostname: page-component-8448b6f56d-cfpbc Total loading time: 0 Render date: 2024-04-20T03:12:27.264Z Has data issue: false hasContentIssue false

Disorder-Delineated AlGaAs/GaAs Quantum-Well Phase Modulator

Published online by Cambridge University Press:  10 February 2011

Wallace C. H. Choy
Affiliation:
School of Electronic Engineering, Information Technology & Mathematics, University of Surrey, Guildford, Surrey, GU2 5XH, UK
Bernard L. Weiss
Affiliation:
School of Electronic Engineering, Information Technology & Mathematics, University of Surrey, Guildford, Surrey, GU2 5XH, UK
Get access

Abstract

Modeling is used to investigate waveguide phase modulators, with 0.5 μm and 1 μm quantum well active regions which are defined by implantation induced disordering. By controlling the extent of the interdiffusion in the lateral claddings, the refractive index difference between the core and claddings is used to provide single mode operation. The performance of the phase modulator is studied in terms of optical confinement, phase change per unit voltage per unit length, chirping property and absorption loss. Our result shows that the 0.5 μm one is a more efficient structure and its absorption loss can be reduced by increasing the applied field from 50 kV/cm to 100 kV/cm.

Type
Research Article
Copyright
Copyright © Materials Research Society 1998

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Yoffe, G.W., Brubach, J., Van der Vleuten, W.C., Karouta, F. and Wolter, J.H., Trans. On Electron Dev., 40, p. 2144 (1994).Google Scholar
2. Yoshida, S., Tada, Y., Kotaka, I. and Wakita, K., Electron. Lett., 30, p. 1795 (1994).Google Scholar
3. Vien, C., Schneider, M., Mailly, D., Planel, R., Launois, H., Marzin, H.Y. and Descouts, B., J. Appl. Phys., 70, p. 1444 (1991).Google Scholar
4. Bradley, P.J. and Parry, G., Electron. Lett., 25, p. 1349 (1989).Google Scholar
5. Choy, W.C.H. and Li, E.H., IEEE J. of Quantum Electron., 33, p. 382 (1997).Google Scholar
6. Micallef, J., Li, E.H. and Weiss, B.L., Appl. Phys. Lett., 62, p.3164 (1993).Google Scholar
7. Li, E.H. and Choy, W.C.H., IEEE Photon. Technol. Lett., 7, p.881, (1995).Google Scholar
8. Hausken, T., Yan, R.H., Simes, R.I. and Coldren, L.A., Appl. Phys. Lett., 55, p. 718 (1989).Google Scholar
9. Gibbons, J.F., Johnson, W.S. and Mylroie, S.W., Projected range statistics: semiconductors and related materials 2nd ed. Stroudsburg, Pa: Dowden, Hutchinson & Ross; New York, 1975.Google Scholar
10. Cibert, J., Petroff, P.M., Werder, D.J., Pearton, S.J., Gossard, A.C. and English, J.H., Appl. Phys. Lett., 49, p. 223 (1986).Google Scholar