Hostname: page-component-8448b6f56d-jr42d Total loading time: 0 Render date: 2024-04-25T00:17:30.994Z Has data issue: false hasContentIssue false

Dislocation Dynamics Studied by Mechanical Loss in a Ni3(AI, Ta) Single Crystal at Intermediate Temperatures

Published online by Cambridge University Press:  10 February 2011

B. L. Cheng
Affiliation:
Ecole Polytechnique Fédérale de Lausanne, Institut de Génie Atomique, PHB Ecublens, CH-1015 Lausanne, Switzerland
E. Carreño-Morelli
Affiliation:
Ecole Polytechnique Fédérale de Lausanne, Institut de Génie Atomique, PHB Ecublens, CH-1015 Lausanne, Switzerland
N. Baluc
Affiliation:
Centre de Recherches en Physique des Plasmas, Technologie de la Fusion, OVGA/6, CH-5232 Villigen-PSI, Switzerland
J. Bonneville
Affiliation:
Ecole Polytechnique Fédérale de Lausanne, Institut de Génie Atomique, PHB Ecublens, CH-1015 Lausanne, Switzerland
R. Schaller
Affiliation:
Ecole Polytechnique Fédérale de Lausanne, Institut de Génie Atomique, PHB Ecublens, CH-1015 Lausanne, Switzerland
Get access

Abstract

Dislocation dynamics in Ni3AI intermetallic single crystals has been studied by mechanical spectroscopy between 300 and 700 K. It has been found that in the anomaly domain of the flow stress, which is characteristic of this material, the mechanical loss of predeformed specimens is strongly dependent on strain amplitude, predeformation level, annealing temperature and time. The results can be interpreted as a combination of two phenomena which simultaneously occur as temperature is increased from 300 K to about 500 K: exhaustion of the mobile dislocation segments (superkinks) and pinning of the screw dislocation segments via cross-slip from the (111) onto the (010) planes.

Type
Research Article
Copyright
Copyright © Materials Research Society 1999

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Nowick, A. S. and Berry, B. S., Anelastic Relaxation in Crystalline Solids (New York and London: Academic Press, 1972).Google Scholar
2. Mourisco, A., Baluc, N., Bonneville, J., and Schaller, R., Mater. Sci. Eng. A, 239-240, 281 (1997).CrossRefGoogle Scholar
3. Veyssière, P. and Saada, G., in Dislocations in Solids, Vol.10, edited by Nabarro, F.R.N. and Duesbery, M.S. (Elsevier, Amsterdam, 1996), p.253.Google Scholar
4. Kear, B. H. and Wilsdorf, H.G.F., Trans. Metall. Soc. AIME, 224, 382 (1962).Google Scholar
5. Yoshida, I., Sugai, T., Tani, S., Motegi, M., Minamida, K. and Hayakawa, H., J. Phys. E: Sci. Instrum., 14, 1201 (1981).CrossRefGoogle Scholar
6. Baur, J. and Kulik, A., J. de Phys. 44, C9357 (1983).Google Scholar
7. Timoshenko, S., Résistance des Matériaux (Librairie Polytechnique Béranger, Paris, 1963), p. 276.Google Scholar
8. Cheng, B., Carreño-Morelli, E., Baluc, N., Bonneville, J., and Schaller, R., Phil. Mag A (1999), in press.Google Scholar
9. Mills, M. J., Baluc, N. and Karnthaler, H. P. in High-Temperature ordered Intermetallic Alloys III, edited by Liu, C. T., Taub, A. I, Stoloff, N. s and Koch, C. C. (Mater. Res. Soc. Proc. 133, Boston, A, 1989) pp. 203208.Google Scholar