Hostname: page-component-76fb5796d-qxdb6 Total loading time: 0 Render date: 2024-04-26T05:43:31.982Z Has data issue: false hasContentIssue false

Discontinuity in Particle Granular Temperature Observed in Gas Fluidized Beds Across The Geldart B/A Boundary - Implications for Stability and Properties of the Geldart A Phase

Published online by Cambridge University Press:  10 February 2011

George D. Cody
Affiliation:
Exxon Corporate Research Laboratory, Clinton Township, Route 22 East, Annandale, New Jersey 08801, e-mail:, gdcody@erenj.com
David J. Goldfarb
Affiliation:
Exxon Corporate Research Laboratory, Clinton Township, Route 22 East, Annandale, New Jersey 08801, e-mail:, gdcody@erenj.com
Get access

Abstract

We present new experimental data on the properties of monodispersed glass spheresas a function of sphere diameter and gas flow in a gas fluidized bed. The data obtained by a novel non-intrusive probe of the average particle kinetic energy, or granular temperature, at thewall is used to explore and understand the well known empirical distinction between fluidized particles which exhibit a single phase state at initial fluidization (Geldart A powders) and fluidized particles that exhibit gas bubbles at initial fluidization (Geldart B powders). Specifically we show that the experimental “jump” we observe in the granular temperature atthe Geldart / transition is sufficient to account for the initial stability of the Geldart A phase on the basis of the one dimensional, first order, two wave, stability theory first introduced by Jackson in the early sixties. We present new data on the diameter dependent properties of the glass spheres during bed collapse and bed expansion, which demonstrate the distinctionbetween Geldart A and B behavior for these monodispersed glass spheres. Finally we present a simple Langevin model to account for the dependence of the granular temperature on sphere diameter and gas flow, and discuss the implications of these new experimental data for the fundamental physics of the Geldart A phase.

Type
Research Article
Copyright
Copyright © Materials Research Society 1997

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Geldart, D., in Gas Fluidization Technology, Geldart, D., Ed., John Wiley, New York, 1986, pp. 1151.Google Scholar
2. Jackson, R., in Fluid Particle Technology, AIChE Symposium Series 301, Weimer, A. W., Ed., Vol. 90, American Institute of Chemical Engineers, New York, 1994, pp. 130.Google Scholar
3. Nicolas, M., Chomaz, J.-M., Guazzelli, E., Phys. Fluids, 6, (1994) 39363944.Google Scholar
4. Cody, G. D., Goldfarb, D. J., Storch, G. V. Jr, Norris, A. N., Particle Granular Temperature in Gas Fluidized Beds, AIChE Annual Meeting 11/12–17/95, Miami Beach, Florida (AIChE, 1995).Google Scholar
5. Cody, G. D., Goldfarb, D. J., Storch, G. V. Jr, Norris, A. N., Powder Technology, 87, (1996)211232.Google Scholar
6. Cody, G. D., Goldfarb, D. J., Discontinuity in Particle Granular Temperature Across the Geldart B/A Boundary, AIChE Annual Meeting 11/10–16/96, Chicago, Illinois (AIChE, 1996).Google Scholar
7. Gidaspow, D., Multiphase Flow and Fludization - Continuum and Kinetic Theory Descriptions, Academic Press, San Diego, 1994, p. 239354.Google Scholar
8. Campbell, C. S., Rahman, K., Meas. Sci. Tech., 3, (1992) 709712.Google Scholar
9. Polashenski, W. Jr, Chen, J. C., to be published, Powder Technology,, (1996)Google Scholar
10. Gidaspow, D., Huillin, L., Collisional Viscosity of FCC Particles in a CFB, AIChE Annual Meeting, 11/12–17/95, Miami Beach, Florida (AIChE, 1995).Google Scholar
11. Geldart, D., Powder Technology, 7, (1973) 285–282.Google Scholar
12. Jackson, R., Trans. Instn. Chem. Engrs., 41, (1963) 1321.Google Scholar
13. Anderson, T. B., Jackson, R., I&EC Fundamentals, 6, (1967) 527539.Google Scholar
14. Anderson, T. B., Jackson, R., I&EC Fundamentals, 7, (1968) 1221.Google Scholar
15. Davidson, J. F., in Mobile Paniculate Systems, Guazzelli, E., Oger, L., Eds., Kluwer, Dodrecht, The Netherlands, 1995, pp. 173220.Google Scholar
16. Jackson, R., in Fluidization, Davidson, J. F., Clift, R., Harrison, D., Eds., Academic Press, New York, 1985, pp. 4772.Google Scholar
17. Wallis, G. B., One-Dimensional Two-Phase Flow, McGraw-Hill, New York, 1969, p. 122242.Google Scholar
18. Liu, J. T. C., Proc. R. Soc. Lond., A389, (1983) 331347.Google Scholar
19. Mutsers, S. M. P., Rietema, K., Powder Technology, 18, (1977) 239248.Google Scholar
20. Bouillard, J. X., Gidaspow, D., Powder Technology, 68, (1991) 1322.Google Scholar
21. Tsinontides, S. C., Jackson, R., J. Fluid Mech., 255, (1993) 237274.Google Scholar
22. Foscolo, P. U., Gibilaro, L. G., Chem. Eng. Science, 39, (1984) 16671675.Google Scholar
23. Foscolo, P. U., Gibilaro, L. G., Chem. Eng. Science, 42, (1987) 14891500.Google Scholar
24. Foscolo, P. U., Gibilaro, L. G., Rapagna, S., in Developments in Fluidzation and Fluid Particle Systems, AIChE Symposium Series 308, Chen, J. C., Ed., Vol. 90, American Institute of Chemical Engineers, New York, 1995, pp. 4450.Google Scholar
25. Gibilaro, L., Foscolo, P., di Felice, R., in Two Phase Flow and Waves, Joseph, D. D., Schaeffe, D.G., Eds., Springer-Verlag, New York, 1990, pp. 5669.Google Scholar
26. Batchelor, G. K., J. Fluid Mech, 193, (1988) 75110.Google Scholar
27. Grace, J. R., in Fluidized Processes, AICHE Symposium Series 289, Weimer, A. W., Ed., Vol. 88, American Institute of Chemical Engineers, New York, 1992, pp. 116.Google Scholar
28. Jenkins, J. T., Savage, S. B., J. Fluid Mech., 155, (1983) 187202.Google Scholar
29. Jaeger, H. M., Nagel, S. R., Science, 255, (1992) 15231531.Google Scholar
30. Kunii, D., Levenspiel, O., Fluidization Engineering, Krieger, Malabar, Florida, USA, 1987, p. 73.Google Scholar