Skip to main content Accessibility help

Direct Write Microbatteries for Next-Generation Microelectronic Devices

  • Karen E. Swider-Lyons (a1), Alberto Piqué (a2), Craig B. Arnold (a2) and Ryan C. Wartena (a3)


Microbatteries and integrated microbattery systems are likely to be the sole power source or a power-source component for the next generation of microelectronic devices. As part of the LEAPS (Laser Engineering of Advanced Power Sources) program, custom-designed microbatteries and ultracapacitors will be integrated in microelectronic circuits for optimum performance. The Naval Research Laboratory's Matrix-Assisted Pulsed-Laser Deposition Direct-Write (MAPLE DW) process is used to rapidly fabricate various primary and secondary (non-rechargeable and chargeable) electrochemical power sources. This laser forward-transfer process can be used to transfer any type of battery material and battery material mixtures, including polymers, hydrated oxides, metals, and corrosive electrolytes. Additional laser micromachining capabilities are used to tailor the battery sizes, interfaces, and configurations. Examples are given for planar RuO2 ultracapacitors and stacked alkaline batteries.



Hide All
1. Vincent, C. A. and Scrosati, B., Modern Batteries: An Introduction to Electrochemical Power Sources, 2nd ed. (John Wiley & Sons, New York, 1997).
2. Conway, B. E., J. Electrochem. Soc., 138, 1539 (1991).
3. Trasatti, S., Electrochim. Acta, 36, 225 (1991).
4. Zheng, J. P., Cygan, P. J. and Jow, T. R., J. Electrochem. Soc., 142, 2699 (1995).
5. McKeown, D. A., Hagans, P. L., Carette, L. P. L., Russell, A. E., Swider, K. E. and Rolison, D. R., J. Phys. Chem. B, 103, 4825 (1999).
6. Bates, J. B., Dudney, N. J., Neudecker, B., Ueda, A. and Evans, C. D., Solid State Ionics, 135, 33 (2000).
7. Piqué, A. and Chrisey, D. B., Editors, Direct-Write Technologies for Rapid Prototyping Applications (Academic Press, San Diego, 2002).
8. Piqué, A., Chrisey, D. B., Auyeung, R. C. Y., Fitz-Gerald, J., Wu, H. D., McGill, R. A., Lakeou, S., Wu, P. K., Nguyen, V. and Duignan, M., Appl. Phys. A, 69 [Suppl.], S279 (1999).
9. Chrisey, D. B., Piqué, A., Fitz-Gerald, J., Ringeisen, B. and Modi, R., Laser Focus World, 113 (2000).
10. Chrisey, D. B., McGill, R. A. and Piqué, A., U.S. Patent No. 6,177,151 (23 January 2001).
11. Swider-Lyons, K. E., Weir, D. W., Love, C. T., Modi, R., Sutto, T., Piqué, A. and Chrisey, D. B., in Power Sources for the New Millennium, edited by Jain, M., Ryan, M. A., Surampudi, S., Marsh, R. A. and Nagarajan, G. (Electrochem. Soc. Proc. 2000–22, Pennington, NJ, 2000) pp. 272276.
12. Piqué, A., Swider-Lyons, K. E., Weir, D. W., Love, C. T. and Modi, R., in Laser Applications in Microelectronic and Optoelectronic Manufacturing VI, edited by Gower, M. C., et. al. (SPIE Proc. 274, Bellingham, WA, 2001) pp. 316322.
13. Arnold, C. B., Wartena, R. C., Piqué, A. and Swider-Lyons, K. E., in Rapid Prototyping Technologies — Tissue Engineering to Conformal Electronics, edited by Chrisey, D.B., et. al. (Mater. Res. Proc., Pittsburgh, PA, 2001) in press.


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed