Hostname: page-component-76fb5796d-zzh7m Total loading time: 0 Render date: 2024-04-26T09:38:15.862Z Has data issue: false hasContentIssue false

Direct Synthesis of Silicon Nanowires, Silica Nanospheres, Wire-Like Nanosphere Agglomerates, and Silica-Based Nanotubes and Nanofiber Arrays

Published online by Cambridge University Press:  17 March 2011

J. L. Gole
Affiliation:
Schools of Physics and Georgia Institute of Technology, Atlanta, Georgia 30332-0430 (ph294jg@prism.gatech.edu, 404-894-4029)
J. D. Stout
Affiliation:
Schools of Physics and Georgia Institute of Technology, Atlanta, Georgia 30332-0430 (ph294jg@prism.gatech.edu, 404-894-4029)
Z. R. Dai
Affiliation:
Material Science Georgia Institute of Technology, Atlanta, Georgia 30332-0430 (ph294jg@prism.gatech.edu, 404-894-4029)
Z. L. Wang
Affiliation:
Material Science Georgia Institute of Technology, Atlanta, Georgia 30332-0430 (ph294jg@prism.gatech.edu, 404-894-4029)
Get access

Extract

For several decades, the vapor-liquid-solid (VLS) process,1,2 where gold particles act as a mediating solvent on a silicon substrate, forming a molten alloy, has been applied to the generation of silicon whiskers. The diameter of the whisker is established by the diameter of the liquid alloy droplet at its tip. The VLS reaction generally leads to the growth of silicon whiskers epitaxially in the <111> direction on single crystal silicon <111> substrates.1-3 Recently, Lieber,4 Lee,5 Yu,6 and coworkers have extrapolated on the ideas entailed in the VLS technique to develop laser ablation of metal containing silicon targets, obtaining bulk quantities of silicon nanowires. More recently, Lee et al.5,7 have shown that oxides play a dominant role in the nucleation and growth of semiconductor nanowires be it by laser ablation, thermal evaporation, or chemical vapor deposition. Lee et al.5 have suggested a new growth mechanism, referred to as oxide assisted nanowire growth, which represents a new approach to nanowire synthesis. Our initial approach8-10 to this problem has involved the application of the techniques of high temperature synthesis to modify the approach of Lee et al. and generate virtually defect free SiO2 sheathed crystalline silicon nanowires and silica (SiO2) nanospheres which can be agglomerated to wire-like configurations impregnated with crystalline silicon nanoclusters. Further controlled condensation can extend this agglomeration to produce nanotubes and nanofiber arrays.

Type
Research Article
Copyright
Copyright © Materials Research Society 2001

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Boostma, G. A. and Gassen, H. J., J. Cryst. Growth 10, 223 (1971).Google Scholar
2. Morales, A. M. and Lieber, C. M., Science 279, 208 (1998).Google Scholar
3. Zhang, Y. F., Zhang, Y. H., Wang, N., Yu, D. P., Lee, C. S., Bello, I., and Lee, S. T., Appl. Phys. Lett. 72, 1835 (1998).Google Scholar
4. See for example, Hu, J., Odom, T. W., and Lieber, C. M., Acc. Chem. Res. 32, 435 (1999) and references therein.Google Scholar
5. See for example, Lee, S. T., Wang, N., Zhang, Y. F., and Tang, Y. H., “Semiconductor Nanowires from Oxide”, MRS Bulletin, August 1999, pg. 36, and references therein.Google Scholar
6. Yu, D. P., Bai, Z. G., Ding, Y., Hang, Q. L., Zhang, H. Z., Wang, J. J., Zou, Y. H., Qian, W., Xiong, G. C., Zhou, H. T., and Feng, S. Q., Appl. Phys. Lett. 72, 3458 (1998).Google Scholar
7. Wang, N., Tang, Y. H., Zhang, Y. F., Lee, C. S., Bello, I., and Lee, S. T., Chem. Phys. Lett. 299, 237 (1999).Google Scholar
8. Gole, J. L., Stout, J. D., Rauch, W. L., and Wang, Z. L., Appl. Phys. Lett. 76, 2346 (2000).Google Scholar
9. Gao, R. P., Wang, Z. L., Stout, J. D., and Gole, J. L., Advanced Materials 12, 1938 (2000).Google Scholar
10. Wang, Z. L., Dai, Z. R., Bai, Z. G., Gao, R. P., and Gole, J. L., Appl. Phys. Lett. 77, 3349 (2000).Google Scholar
11. Gole, J. L., Stout, J. D., and Wang, Z. L., to be published.Google Scholar
12. Prokes, S. M., Carlos, W. E., Seals, Lenward, Lewis, Stephen, and Gole, James L., “Ferromagnetic Nickel Coated Silica Nanospheres from Electroless Solution”, in preparation.Google Scholar
13. Gole, J. L. and White, M. G., “New Cu/SiO2 Based Catalyst for Selective Ethanol – Acetaldehyde Conversions”, Georgia Tech invention disclosure, March 2000. “Nanocatalysis: Selective Conversion of Ethanol to Acetaldehyde Using Monoatomically Dispersed Copper on Silica Nanospheres”, Journal of Catalysis, submitted.Google Scholar
14. Sales literature, Cabot Corporation.Google Scholar