Hostname: page-component-76fb5796d-qxdb6 Total loading time: 0 Render date: 2024-04-26T18:42:17.715Z Has data issue: false hasContentIssue false

Direct Sub-Lattice Imaging of Interface Dislocation Structures in CdTe/GaAs(001)

Published online by Cambridge University Press:  21 February 2011

A. J. McGibbon
Affiliation:
Solid State Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831–6031, USA
S. J. Pennycook
Affiliation:
Solid State Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831–6031, USA
J. E. Angelo
Affiliation:
Sandia National Laboratories, Livermore, CA, USA
M. J. Mills
Affiliation:
Sandia National Laboratories, Livermore, CA, USA
Get access

Abstract

In this paper, we present directly interpretable atomic resolution images of dislocation structures at interfaces in CdTe/GaAs(001) systems. This is achieved using the technique of Z-contrast imaging in a 300kV scanning transmission electron microscope in conjunction with maximum entropy image analysis. In addition to being used to further the understanding of the relationship between growth conditions and exhibited properties, the data presented provides direct information on the atomic arrangements at dislocation cores.

Type
Research Article
Copyright
Copyright © Materials Research Society 1995

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Otsuka, N., Kolodziejski, L. A., Gunshor, R. L., Datta, S., Bicknell, R. N. and Schetzina, J. F., Appl. Phys. Lett. 48 248 (1986)Google Scholar
2. Tatarenko, S., Cibert, J., Gobil, Y., Feuillet, G., Saminadayar, K., Chami, A. C. and Ligeon, E., Appl. Surf. Sci. 41/42 470 (1989)Google Scholar
3. Biasiol, G., Sorba, L., Bratina, G., Nicolini, R., Franciosi, A., Peressi, M., Baroni, S., Resta, R. and Baldereschi, A., Phys. Rev. Lett. 69 1283 (1992)Google Scholar
4. Marsi, M., La Rosa, S., Hwu, Y., Gozzo, F., Coluzza, C., Baldereschi, A., Margaritondo, G., McKinley, J. T., Baroni, S. and Resta, R., J. Appl. Phys. 71 2048 (1992)Google Scholar
5. Angelo, J. E., Gerberich, W. W., Stobbs, W. M., Bratina, G., Sorba, L. and Franciosi, A., Phil. Mag. Lett. 67 279 (1993)Google Scholar
6. Angelo, J. E., Gerberich, W. W., Bratina, G., Sorba, L. and Franciosi, A., J. Cryst. Growth 130 459 (1993)Google Scholar
7. Pennycook, S. J. and Jesson, D. E., Ultramicroscopy 37 14 (1991)Google Scholar
8. Pennycook, S. J. and Jesson, D. E., Acta Metall. Mater. 40 S149 (1992)Google Scholar
9. McGibbon, A. J., Pennycook, S. J. and Wasilewski, Z., Mat. Res. Soc. Symp. Proc. 326 299 (1994)Google Scholar
10. Gull, S. F. and Skilling, J., IEEE Proc. 131F 646 (1984)Google Scholar
11. Masuda, K., Kojima, K. and Hoshino, T., Jap. J. Appl. Phys. 22 1240 (1983)Google Scholar
12. Hornstra, J., J. Phys. Chem. Solids 5 129 (1958)Google Scholar
13. Bourret, A., Desseaux, J. and Renault, A., Phil. Mag. A 45 1 (1982)Google Scholar
14. Louchet, F. and Thibault-Desseaux, J., Rev. De Phys. Appl. 22 207 (1987)Google Scholar