Hostname: page-component-848d4c4894-cjp7w Total loading time: 0 Render date: 2024-06-19T19:44:46.743Z Has data issue: false hasContentIssue false

Direct Solid State Phase Transformation from Co to Epitaxial CoSi2 in Co / Thin Ti / (100) Si Structure and its Application for Shallow Junction Formation

Published online by Cambridge University Press:  03 September 2012

Shinichi Ogawa
Affiliation:
Semiconductor Research Center, Matsushita Electric Ind. Co., Ltd., 3-1-1 Yagumo-Nakamachi, Moriguchi, Osaka 570, Japan Materials Science & Engineering, Stanford University, Stanford, CA 94305
James A. Fair
Affiliation:
Varian, Ginzton Research Center, 3075 Hansen Way, Palo Alto, CA 94304
Takashi Kouzaki
Affiliation:
Matsushita Technoresearch Inc., 3-1-1 Yagumo-Nakamachi, Moriguchi, Osaka 570, Japan
Robert Sinclair
Affiliation:
Materials Science & Engineering, Stanford University, Stanford, CA 94305
Erin C. Jones
Affiliation:
Electrical Engineering & Computer Sciences, University of California, Berkeley, CA 94720
Nathan W. Cheung
Affiliation:
Electrical Engineering & Computer Sciences, University of California, Berkeley, CA 94720
David B. Fraser
Affiliation:
Component Research, Intel Corp., 2200 Mission College Blvd. SC1-03, Santa Clara, CA 95052
Get access

Abstract

Direct epitaxial CoSi2 formation from Co, which is contrary to the reported silicidation process : Co→Co2 Si→CoSi→CoSi2, has been found during anneal of Co / Ti / (100) Si system. 2 nm thick Ti and 15 nm thick Co films were sputter deposited, and then annealed for 30 min at temperatures between 375°C and 900°C. At room temperature, the 2 nrm Ti immediately forms an amorphous Ti-Si-Co layer between the Co and Si. Epitaxial CoSi2 begins to form at 400°C, while the amorphous layer continues to act as both a Co diffusion retardant and Si diffusion suppressant even at 900°C. This retarded diffusion of Co reduces the growth rate of the CoSi2 over the entire temperature range studied. Superiority of the epitaxial to polycrystalline silicide has been demonstrated. In self aligned structures, an epitaxial CoSi2 film is formed by a single-step anneal without any overgrowth onto adjacent field oxide areas utilizing the amorphous diffusion controlling layer. A p+/n junction of 40 nm depth with reduced leakage and low ideality factor has been obtained by impurity diffusion from epitaxial CoSi2.

Type
Research Article
Copyright
Copyright © Materials Research Society 1994

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1] Wei, C-S., Fraser, D. B., Dass, M. L. A., Frost, M., and Brat, T., V-MIC, p.233 (1990)Google Scholar
[2] Dass, M. L. A., Fraser, D. B., and Wei, C., Appl. Phys. Lett. 58, 1308 (1991)Google Scholar
[3] Barmak, K., Clevenger, L. A., Agnello, P. D., Ganin, E., Copel, M., Dehaven, P., Falta, J., d'Heurle, F. M., and Cabral, C. Jr., Mat. Res. Soc. Symp. Proc. Vol. 238, p.575, (1992)CrossRefGoogle Scholar
[4] Hsia, S. L., Tan, T. Y., Smith, P., and McGuire, G. E., J. Appl. Phys. 72, 1864, (1992)Google Scholar
[5] Hong, F., Patnaik, B. K., Rozgonyi, G. A., and Osburn, C. M., Mat. Res. Soc. Symp. Proc. Vol. 303, (1993)Google Scholar
[6] Ogawa, S., Dass, M. L. A., Fair, J. A., Kouzaki, T., and Fraser, D. B., Mat. Res. Soc. Symp. Proc. Vol. 312, p.193, (1993)Google Scholar
[7] Jiang, H., Osburn, C. M., Xiao, Z-G., McGuire, G., and Rozgonyi, G. A., J. Electrochem. Soc., Vol. 139, 211 (1992)Google Scholar
[8] Wang, Q., Osburn, C. M., and Canovai, C. A., IEEE Trans. Electron Devices, ED–39, 2486 (1992)CrossRefGoogle Scholar
[9] Ogawa, S., Kouzaki, T., Yoshida, T., and Sinclair, R., J. Appl. Phys. 70, 827 (1991)Google Scholar
[10] Qian, X. Y., Appl. Phys. Lett. 59, 348 (1991)CrossRefGoogle Scholar
[11] Murarka, S. P., Read, M. H., Doherty, C. J., and Fraser, D. B., J. Electrochem. Soc. 129, 293 (1982)Google Scholar