Hostname: page-component-7479d7b7d-q6k6v Total loading time: 0 Render date: 2024-07-12T11:29:35.106Z Has data issue: false hasContentIssue false

Direct Process Metal Alkoxides as Ceramic Precursors

Published online by Cambridge University Press:  28 February 2011

R. J. Ayen
Affiliation:
Stauffer Chemical Company, Dobbs Ferry, NY 10522
J. H. Burk
Affiliation:
Stauffer Chemical Company, Dobbs Ferry, NY 10522
Get access

Abstract

Metal alkoxides have great promise as oxide ceramic precursors. Direct manufacture from the metal and the alcohol permits the production of high purity materials and of those alkoxides which cannot be easily obtained by other routes. Examples which are of great interest to ceramics are the alkoxides of silicon, aluminum, magnesium and yttrium.

Currently, only tetraethyl silicate is produced in large volumes by the direct route, employing a catalytic continuously fed process, yielding a distilled product. The reactivity of silicon, aluminum, magnesium and yttrium is governed by the metal surface state and activation and varies with different catalysts and alcohol chain length and branching.

The major use of tetraethyl silicate is in partially hydrolyzed form as binder for precision casting molds and zinc-rich primer coatings. Judicious choice of alkoxide ligands allows the manufacture of soluble or liquid Si, Al, Mg, and Y derivatives. These are especially suitable for molecular doping and mixing in the manufacture of yttriastabilized zirconia, mullite, spinel, cordierite and other oxide ceramic precursors.

Type
Articles
Copyright
Copyright © Materials Research Society 1986

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Dislich, H., Angew. Chem., Int'l. Edn., 10, 363(1971)Google Scholar
2. Dislich, H., J.Non-Crystalline Solids, 57, 371(1983)Google Scholar
3. Electronic Chemicals News, 1/6/86, pp 7–8Google Scholar
4. Bradley, D. C., Mehrotra, R. C. and Gaur, D. P., Metal Alkoxides, Academic Press Inc. (London) LTD., 1978.Google Scholar
5. Kirk-Othmer, , Encyclopedia of Chemical Technology, 3rd Edn., Volume 2, pp 1–17; Volume 20, pp 912–921.Google Scholar
6. Gaines, John M., U. S. Patent No. 2 927 937 (1960)Google Scholar
7. Greco, C. C. and Triplett, K. B., Stauffer Chemical Co., Patent application filed.Google Scholar
8. Speer, F. and Wiberg, E., U. S. Patent No. 2 909 550 (1955)Google Scholar
9. Haber, C. P., U. S. Patent No. 2 445 576 (1948)Google Scholar
10. Newton, W. E. and Rochow, E. G., Inorg. Chem. 9, 1071 (1970)Google Scholar
11. Bleh, Otto, U. S. Patent No. 3 627 807 (1971)Google Scholar
12. Meerwein, H. and Bersin, T., Ann. Chem., 476, 113150 (1929)Google Scholar
13. Rex, W. A., U. S. Patent No. 2 666 076 (1954)Google Scholar
14. Mazdiyasni, K., Brown, L. M. and Lynch, C. T., U. S. Patent No. 3 757 412 (1973)Google Scholar
15. Kreuzburg, G., Lenz, A. and Rogler, W., U. S. Patent No. 4 113 761 (1978)Google Scholar
16. Anderson, A. R. and Porter, T. H., U. S. Patent No. 3 803 197 (1974)Google Scholar
17. Magee, W. L. and Telschow, J. E., U. S. Patent No. 4 288 604 (1981)Google Scholar
18. Joch, W., Lenz, A. and Rogler, W., U. S. Patent No. 4 197 252 (1980)Google Scholar
19. Bonitz, E., Angew, Chem., Int'l Edn., 5, 462(1966)Google Scholar
20. von Ebelmen, J. J., Ann. Chem., 57, 319355(1846)Google Scholar
21. Stauffer plants in Weston, MI and Paulinia, Brazil with multi-million pound capacity.Google Scholar
22. Whitaker, G. C., Aluminum Alcoholates and the Commercial Preparation and Uses of Aluminum Isopropylate, Advances in Chemistry Series No. 23, pp 184–9 (1959)CrossRefGoogle Scholar
23. Kobetz, P., Shapiro, H. and Impastate, F. J., U. S. Patent No. 3 717 666 (1973)Google Scholar
24. Buzas, A. J. and Schenk, R. T. E., U. S. Patent No. 3 446 828 (1969)Google Scholar
25. Feichtinger, H., Noeske, H. and Birnkraut, H. W., U. S. Patent No. 3 920 713 (1975)Google Scholar
26. Brown, L. M. and Mazdiyasni, K. S., Inorg. Chem., 9, 2783 (1970)CrossRefGoogle Scholar
27. Fegley, B. Jr, White, P., and Bowen, H. K., Ceram. Bull., 64, 1115(1985)Google Scholar
28. Natsui, M. and Takahashi, T., U.S. Patent No. 4 543 346 (1985)Google Scholar
29. Mazdiyasni, K. S. and Brown, L. M., J. Amer. Ceram. Soc., 55, 548(1972)CrossRefGoogle Scholar
30. Thomas, I. M., U.S. Patent No. 3 903 122 (1975)Google Scholar