Hostname: page-component-848d4c4894-xfwgj Total loading time: 0 Render date: 2024-07-04T05:28:04.986Z Has data issue: false hasContentIssue false

Diffusion of Carbon Monoxide in Metalorganic thin Films Derived from Titanium Alkoxide Carboxylates

Published online by Cambridge University Press:  25 February 2011

Charles D. Gagliardi
Affiliation:
Michigan State University, Department of Chemical Engineering, East Lansing, MI 48824.
Dilum Dunuwila
Affiliation:
Michigan State University, Department of Chemical Engineering, East Lansing, MI 48824.
C. K. Chang
Affiliation:
Michigan State University, Department of Chemistry, East Lansing, MI 48824.
Kris A. Berglund
Affiliation:
Michigan State University, Department of Chemical Engineering, East Lansing, MI 48824. Michigan State University, Department of Agricultural Engineering, East Lansing, MI 48824.
Get access

Abstract

The diffusion of carbon monoxide into thin, transparent, porous film media is studied by doping the film with an iron porphyrin and spectroscopically monitoring the chemical interaction between the reduced iron porphyrin and the diffusing solute. The films are spin-cast from metal alkoxide carboxylates. Both optical absorption and resonance Raman spectroscopies have been used to study the porphyrin-doped film and the diffusion process.

The studies yield information on the effective pore size and homogeneity of the materials, and show that redox chemistry can be performed on incorporated metallo-porphyrins. This investigation also demonstrates the usefulness of porphyrin-doped films as chemical sensors, showing a sensitivity below 70 ppb to aqueous carbon monoxide.

Type
Research Article
Copyright
Copyright © Materials Research Society 1992

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1 Gagliardi, C. D., Dunuwila, D., and Berglund, K. A., in Better Ceramics Through Chemistry IV, edited by Zdinsky, R.J. J., Brinkff, C. J., Clark, D. E. and Ulnch, D.R. (Mater. Res. Soc. Proc. 180, Pittsburgh, PA, 1990) pp. 801805.Google Scholar
2 Livage, J., Henry, M., and Sanchez, C., Prog. Solid St. Chem. 18 259341 (1988).CrossRefGoogle Scholar
3 Sanchez, C. and Livaee, J., New J. Chem. 14 513521 (1990).Google Scholar
4 Sanchez, C., Babonneau, F., Doeuff, S., Leaustic, A., in Ubmstructure Processing of Advanced Ceramics, edited by Mackenzie, J. D. and Ulrich, D. R. (John Wiley and Sons, New York, NY, 1988).Google Scholar
5 Doeuff, S., Henry, M., Sanchez, C., and Livage, J., J. Non-cryst. Solids 89 206216 (1987).Google Scholar
6 Sanchez, C., Livage, J., Henry, M., Babonneau, F., J. Non-cryst. Solids 100 6576 (1988).Google Scholar
7 Sanchez, C., Tolando, P., Ribot, F., in Better Ceramics Through Chemistry IV, edited by Zelinsky, B. J. J., Brinker, C. J., Clark, D. E., and Ulrich, D. R (Mater. Res. Sec. Proc. 180, Pittsburgh, PA, 1990) pp.4759.Google Scholar
8 Mehrotra, R. C., Inorg. Chim. Acta Rev. 1 99112 (1967).Google Scholar
9 Mehrotra, R. C. and Bohra, R., Metal Carboxylates (Acedemic Press, New York, NY, 1983).Google Scholar
10 Gagliardi, C. D., Berglund, K. A., in Processing Science of Advanced Ceramics, edited by Aksay, I. A., McVay, G. L., Ulrich, D. R. (Mater. Res. Soc. Proc. 155, Pittsburgh, PA, 1989) pp. 127135.Google Scholar
11 Gagliardi, C. D., Dunuwila, D., Van Vlierberge, B., and Berglund, K. A., these proceedings.Google Scholar
12 Van Vlierberge, B., Dulebohn, J. I., Berglund, K. A., in Chemical Processing of Advanced Materials, ed. by Hench, L. L. (Wiley, & Sons, New York, 1992).Google Scholar
13 Lessard, R. B., Berglund, K. A., and Nocera, D. G., in Processing Science of Advance Ceramics, Aksay, , McVay, G. L., Ulrich, D.R. (Mater. Res. Soc. Proc. 155, Pittsburgh, PA, 1989) pp. 119125.Google Scholar
14 Lessard, R. B., Wallace, M. M., Oertling, W. A., Chang, C. K., Berglund, K. A., and Nocera, D. G., in Processing Science of Advanced Ceramics, edited by Aksay, I. A., McVay, G. L., Ulrich, D. R. (Mater. Res. Soc. Proc. 155, Pittsburgh, PA, 1989) pp.109117.Google Scholar
15 Slama-Schwok, A., Ottolenghi, M., and Avnir, D., Nature 355 240 (1992).Google Scholar
16 Slama-Schwok, A., Avnir, D., and Ottolenghi, M., J. Am. Chem. Soc. 113 3984 (1991).Google Scholar
17 Slama-Schwok, A., Avnir, D., and Ottolenghi, M., J. Am. Chem. Soc. 93 7544 (1989).Google Scholar
18 Zusman, A. R., Rottman, C., Ottolenghi, M., and Avnir, D., J. Non-cryst. Solids 122 107 (1990).CrossRefGoogle Scholar
19 Lev, O., Kuyavskaya, B. I., Gigozin, I., Ottolenghi, M, and Avnir, D., Fresenius J. Anal. Chem. 1 (1992).Google Scholar
20 Dulebohn, J. I., Van vlierberge, B., Berglund, K. A., Lessard, R., Yu, J., and Nocera, D., in Better Ceramics Through Chemistry IV, edited by Zelinsky, B. J. J., Brinker, C. J., Clark, D. E., and Ulrich, D. R. (Mater. Res. Soc. Proc. 180, Pittsburgh, PA, 1990) pp.733740.Google Scholar
21 Chang, C. K., Ebina, F., J. C. S. Chem. Commun. 778 (1981).CrossRefGoogle Scholar
22 Sotiriou, C. and Chang, C. K., J. Am. Chem. Soc. 110 2264 (1988).Google Scholar
23 DiNeDo, R. K., Chang, C. K. in The Porphyrins (Dolphin, D., ed.) Vol. I, (Acedemic Press, New York, NY, 1978)289.Google Scholar
24 Dunuwila, D., Van Vlierberge-Torgerson, B., Chang, C. K., and Berglund, K. A., to be submitted.Google Scholar
25 Ward, B. and Chang, C. K., Photochem. Photobiol., 35 757 (1982).CrossRefGoogle Scholar
26 Rettich, T. R., Battino, R., and Wilhelm, E., Ber. Bunsenges. Phys. Chem. 86, 1128 (1982)CrossRefGoogle Scholar
27 Spiro, T. G., in Iron Porphyrins - Part II, Physical Bioinorganic Chemistry Series, edited by Lever, A. B. and Gray, H. B. (Addison-Wesley, New York, NY, 1983).Google Scholar
28 Colthrop, N. B., Daly, L. H., and Wiberley, S. E., Introduction to Infrared and Raman Spectroscopy, 3rd edition (Acedemic Press, New York, NY, 1990).Google Scholar