Hostname: page-component-76fb5796d-45l2p Total loading time: 0 Render date: 2024-04-26T20:38:28.657Z Has data issue: false hasContentIssue false

Diffuse and Small Angle Neutron Scattering Studies of Clustering and Decomposition in Electron-Irradiated Cu-Ni-Fe Alloys

Published online by Cambridge University Press:  21 February 2011

H.W. Gölling
Affiliation:
Hahn-Meitner-Institut für Kernforschung BerlinGmbH Glienicker Str. 100, D-1000 Berlin 39, W.-Germany
R. Poerschke
Affiliation:
Hahn-Meitner-Institut für Kernforschung BerlinGmbH Glienicker Str. 100, D-1000 Berlin 39, W.-Germany
D. Schwahn
Affiliation:
Hahn-Meitner-Institut für Kernforschung BerlinGmbH Glienicker Str. 100, D-1000 Berlin 39, W.-Germany Institut für Festkörperforschung der KFA JülichGmbH Postfach 1913, D-5170Jilich I, W.-Germany
H. Wollenberger
Affiliation:
Hahn-Meitner-Institut für Kernforschung BerlinGmbH Glienicker Str. 100, D-1000 Berlin 39, W.-Germany
Get access

Abstract

Earlier investigations of short range clustering (SRC) and long range decomposition (LRD) in Cu-Ni alloys upon electron irradiation [1,2] have been extended to alloys containing 0.5 and 2 at.% Fe. Moreover, quenching instead of furnace cooling was applied to achieve a well defined homophase equilibrium state with a small degree of SRC. Under subsequent irradiation at temperatures between 373 K and 623 K the decomposition kinetics of the alloys have been followed by diffuse and small angle neutron scattering experiments within a momentum transfer range of 0.001 < κ(Å−1) < 8. The addition of Fe is found to extend the miscibility gap to higher temperatures. The observed scattering curves are discussed in terms of the existing models for the initial stages of spinodal decomposition, irradiation enhanced diffusion and phase stability under irradiation.

Type
Research Article
Copyright
Copyright © Materials Research Society 1984

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Wagner, W., Poerschke, R., Axmann, A. and Schwahn, D., Phys. Rev. B21, 3087 (1980)Google Scholar
2. Wagner, W., Poerschke, R. and Wollenberger, H., J. Phys. F: Metal Phys. 12, 405 (1982)Google Scholar
3. Sizmann, R., J. Nucl. Mater. 69&70, 386 (1978)Google Scholar
4. Hasebe, M. and Nishizawa, T., in: Applications of phase diagrams in metallurgy and ceramics, N.B.S. Special Publications 496, Carter, G.C., ed. (1978), pp. 911 Google Scholar
5. Butler, E.P. and Thomas, G., Acta Metall. 18, 347 (1970)Google Scholar
6. Livak, R.J. and Thomas, G., Acta Metall. 19, 497 (1971)Google Scholar
7. Aalders, J., PHD Thesis, University of Utrecht, The Netherlands, 1982 Google Scholar
8. Krivoglaz, M.A., Theory of x-ray and thermal neutron scattering in real crystals, New York (Plenum) 1969 Google Scholar
9. Cook, H.E., de Fontaine, D. and Hilliard, J.E., Acta Metall. 17, 765 (1969)Google Scholar
10. Cook, H.E., J. Phys. Chem. Solids 30, 2427 (1969)Google Scholar
11. Cook, H.E., Acta Metall. 18, 297 (1970)Google Scholar
12. Gölling, H.W., PHD Thesis, Technical University Berlin, 1983 Google Scholar
13. Mozer, B., Keating, D.T. and Moss, S.C., Phys. Rev. 175, 868 (1968)Google Scholar
14. Poerschke, R. and Wollenberger, H., Rad. Effects 43, 225 (1980)Google Scholar
15. Wiedersich, H., Okamoto, P.R. and Lam, N.Q., J. Nucl. Mater. 83, 98 (1979)Google Scholar
16. Wagner, W., Naundorf, V., Rehn, L.E. and Wiedersich, H., Effects of Radiation on Materials: Eleventh Conference, ASTM STP 782, Brager, H.R. and Perrin, J.S., eds. ASTM (1982) 895 Google Scholar
17. Bocquet, J.L. and Martin, G., J. Nucl. Mater. 83, 186 (1979)Google Scholar
18. Vrijen, J., Aalders, J., van Dijk, C. and Radelaar, S., Phys. Rev. B 22 1503 (1980)Google Scholar