Hostname: page-component-848d4c4894-x5gtn Total loading time: 0 Render date: 2024-05-07T20:30:54.402Z Has data issue: false hasContentIssue false

Diffraction Symmetry in Crystalline, Close-Packed C60

Published online by Cambridge University Press:  28 February 2011

R. M. Fleming
Affiliation:
AT&T Bell Laboratories, Murray Hill, New Jersey 07974
T. Siegrist
Affiliation:
AT&T Bell Laboratories, Murray Hill, New Jersey 07974
P. M. Marsh
Affiliation:
AT&T Bell Laboratories, Murray Hill, New Jersey 07974
B. Hessen
Affiliation:
AT&T Bell Laboratories, Murray Hill, New Jersey 07974
A. R. Kortan
Affiliation:
AT&T Bell Laboratories, Murray Hill, New Jersey 07974
D. W. Murphy
Affiliation:
AT&T Bell Laboratories, Murray Hill, New Jersey 07974
R. C. Haddon
Affiliation:
AT&T Bell Laboratories, Murray Hill, New Jersey 07974
R. Tycko
Affiliation:
AT&T Bell Laboratories, Murray Hill, New Jersey 07974
G. Dabbagh
Affiliation:
AT&T Bell Laboratories, Murray Hill, New Jersey 07974
A. M. Mujsce
Affiliation:
AT&T Bell Laboratories, Murray Hill, New Jersey 07974
M. L. Kaplan
Affiliation:
AT&T Bell Laboratories, Murray Hill, New Jersey 07974
S. M. Zahurak
Affiliation:
AT&T Bell Laboratories, Murray Hill, New Jersey 07974
Get access

Abstract

We have grown crystals of the carbon structure C60 by sublimation. In contrast to solution-grown crystals, the sublimed crystals have long range order with no evidence of solvent inclusions. Sublimed C60 forms three dimensional, faceted crystals with a close-packed, face-centered cubic unit cell. We have refined a crystal structure using the “soccer ball” model of the C60 molecule. The results indicate that the C60 molecule has the expected spherical shape, however the data are not sufficiently accurate to unambiguously determine atomic positions.

Type
Research Article
Copyright
Copyright © Materials Research Society 1991

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1] Kroto, H.W., Heath, J.R., O’Brien, S.C., Curl, R.F., Smalley, R.E., Nature 318, 162 (1985).CrossRefGoogle Scholar
[2] Krätschmer, W., Lamb, L.D., Fostiropoulos, K., Huffman, D.R., Nature 347, 354 (1990).Google Scholar
[3] Taylor, R., Hare, J. P., Abdul-Dada, A. K. and Kroto, H. W., J. Chem. Soc., Chem. Commun., 1423 (1990).Google Scholar
[4] Lüthi, H.P., Almlöf, J., J. Chem. Phys. Lett. 135, 357 (1987).CrossRefGoogle Scholar
[5] Satpathy, S., Chem. Phys. Lett. 130, 545 (1986).CrossRefGoogle Scholar
[6] Tycko, R., Haddon, R.C., Dabbagh, G., Glarum, S.H., Douglass, D.C., and Mujsce, A.M., J. Phys. Chem., in press.Google Scholar
[7] See, for example, structures of plastic crystals such as Amourex, J. P. and Foulon, M., Acta Cryst. B43, 470 (1987) orCrossRefGoogle Scholar
Kahn, R., Forume, F., Reaud, M. and Andre, D., Acta Cryst. A28, S182 (1972).Google Scholar
[8] Goran, S. M., Greaney, M., Cox, D. M. and Sherwood, R., Proceedings of the Materials Research Society, Boston, Nov. 29, 1990.Google Scholar
[9] Hawkins, J.,. Lewis, T. A., Loren, S. D., Meyer, A., Heath, J. R., Saykally, R. J. and Hollander, F. J., J. Chem. Soc., Chem. Commun., submitted.Google Scholar
[10] Fleming, R., et. al., in preparation.Google Scholar
[11] Decker, B. F. and Kasper, J. S., Acta. Cryst. 12, 503 (1959).Google Scholar
[12] Decker, B. F. and Kasper, J. S., Acta. Cryst. 12, 503 (1959), andCrossRefGoogle Scholar
Hoard, J. L., Sullenger, D. B., Kennard, C. H. L. and Huges, R. E., J. Solid State Chem. 1, 268 (1970).Google Scholar