Hostname: page-component-848d4c4894-pftt2 Total loading time: 0 Render date: 2024-05-13T06:27:44.573Z Has data issue: false hasContentIssue false

Diffraction Studies of the Atomic Structure of Grain Boundaries

Published online by Cambridge University Press:  25 February 2011

K. R. Milkove
Affiliation:
Materials Science & Engineering, Bard Hall, Cornell University, Ithaca, NY 14853, U.S.A.
P. A. Lamarre
Affiliation:
Materials Science & Engineering, Bard Hall, Cornell University, Ithaca, NY 14853, U.S.A.
F. Schmückle
Affiliation:
Materials Science & Engineering, Bard Hall, Cornell University, Ithaca, NY 14853, U.S.A.
M. D. Vaudin
Affiliation:
Materials Science & Engineering, Bard Hall, Cornell University, Ithaca, NY 14853, U.S.A.
S. L. Sass
Affiliation:
Materials Science & Engineering, Bard Hall, Cornell University, Ithaca, NY 14853, U.S.A.
Get access

Abstract

The application of diffraction techniques to study the atomic structure of grain boundaries is reviewed. The determination of the projected structure of a large angle [001] twist boundary is described. The influence of f.c.c. metal type and bonding type on boundary structure is examined. Generalizations are made concerning the structure of large angle [001] twist boundaries based on the results of the diffraction studies.

Type
Research Article
Copyright
Copyright © Materials Research Society 1985

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Budai, J., Bristowe, P.D. and Sass, S.L., Acta Metall. 31, 699 (1983).10.1016/0001-6160(83)90085-8CrossRefGoogle Scholar
2. Budai, J., Donald, A.M. and Sass, S.L., Scripta Metall. 16, 393 (1982).10.1016/0036-9748(82)90158-2CrossRefGoogle Scholar
3. Hondros, E.D., J. Physique 36, C4117 (1975).Google Scholar
4. Marcus, H.L. and Palmberg, D.W., Trans. AIME 245, 1664 (1969).Google Scholar
5. Low, J.R., Stein, D.F., Turkalo, A.M. and LaForce, R.P., Trans. AIME 242, 14 (1968).Google Scholar
6. Messmer, R.P. and Briant, C.L., Acta Met. 30, 457 (1982).10.1016/0001-6160(82)90226-7CrossRefGoogle Scholar
7. Gaudig, W. and Sass, S.L., Phil. Mag. A 39, 725 (1979).10.1080/01418617908239303CrossRefGoogle Scholar
8. Guan, D.Y. and Sass, S.L., Phil. Mag. 27, 1211, 1225 (1973).10.1080/14786437308225829CrossRefGoogle Scholar
9. Budai, J., Gaudig, W. and Sass, S.L., Phil. Mag. A40, 757 (1979).10.1080/01418617908234872CrossRefGoogle Scholar
10. Bristowe, P.D. and Crocker, A.G., Phil. Mag. A 38, 487 (1978).10.1080/01418617808239249CrossRefGoogle Scholar
11. Schwartz, L.H. and Cohen, J.B., Diffraction From Materials, (1979), Academic Press.Google Scholar
12. Bollmann, W., Crystal Defects and Crystalline Interfaces, (1970), Springer-Verlag, New York.10.1007/978-3-642-49173-3CrossRefGoogle Scholar
13. Bristowe, P.D. and Sass, S.L., Acta Metall. 28, 575 (1980).10.1016/0001-6160(80)90124-8CrossRefGoogle Scholar
14. Pond, R.C. and Bollmann, W., Phil. Trans. Roy. Soc. London 292, 449 (1979).10.1098/rsta.1979.0069Google Scholar
15. Wolf, D., Acta Metall. 32, 735 (1984).10.1016/0001-6160(84)90147-0CrossRefGoogle Scholar
16. Lamarre, P. and Sass, S.L., Scripta Metall. 17, 1141 (1983).10.1016/0036-9748(83)90470-2CrossRefGoogle Scholar
17. Brokman, A. and Balluffi, R.W., Acta Metall. 31, 1639 (1983).10.1016/0001-6160(83)90162-1CrossRefGoogle Scholar
18. Vaudin, M.D., Burkel, E., Lamarre, P. and Sass, S.L.. To be published.Google Scholar
19. Liou, K.-Y. and Peterson, N.L., in Surfaces and Interfaces in Ceramic and Ceramic-Metal Systems (1981), Materials Science Research, Vol.14, Plenum Press, New York.Google Scholar