Skip to main content Accessibility help

A Differential Scanning Calorimetric Study of Carbide Transition in 10Cr Tempered Martensitic Steels

  • H.C. Wang (a1)


The process and kinetics of carbide precipitation upon tempering of an Fe-10Cr-0.15C (wt.%) alloy fabricated from high-purity components has been studied. Differential scanning calorimetry reveals three exotherms in a temperature range of 100-700°C. Using advanced electron microscopy and Kissinger analysis, the exothermic processes have been interpreted. Cementite precipitated first upon tempering at temperatures as low as 200°C; M7C3 and M23C6 appear at higher temperatures, precipitating at approximately the same time but on different sites (M7C3 within grains and laths and M23C6 on grain and lath boundaries). Subsequently, the more stable M23C6 coarsens at the expense of M7C3, which dissolves. The first exotherm was interpreted as being related to the precipitation of cementite whilst the other two overlapping exotherms were interpreted as relating to the concurrent precipitation and coarsening of M7C3 and M23C6, respectively. In-situ SEM and TEM observation is being conducted in order to obtain a more precise understanding and further validate the interpretation of the DSC results.



Hide All
1. Saroja, S., Dasgupta, A., Divakar, R., Raju, S., Mohandas, E., Vijayalakshmi, M., Bhanu Sankara Rao, K. and Raj, B., J. Nucl. Mater. 409, 131139 (2011).
2. Klueh, R. L. and Harries, D. R., High chromium ferritic and martensitic steels for nuclear applications. (ASTM International, 2001).
3. Abe, F., Mater. Sci. Eng., A 319321, 770773 (2001).
4. Maruyama, K., Sawada, K. and Koike, J.-i., ISIJ International 41, 641653 (2001).
5. Masuyama, F., ISIJ International 41, 612625 (2001).
6. Furtado, H. C., de Almeida, L. H. and Le May, I., Mater. Charact. 58, 7277 (2007).
7. Smith, A. F., Met. Sci. Tech. 9, 375378, 425-429 (1975).
8. Danielsen, H. K. and Hald, J., in Energy Materials: Materials Science and Engineering for Energy Systems (Maney Publishing, 2006), Vol. 1, pp. 4957.
9. Golpayegani, A., Andrén, H.-O., Danielsen, H. and Hald, J., Mater. Sci. Eng., A 489, 310318 (2008).
10. Inoue, A. and Masumoto, T., Metall. Trans. A 11, 739747 (1980).
11. Park, J. M., Ryu, W. S. and Kang, Y. H., J. Nucl. Mater. 209, 221225 (1994).
12. Das, K. and Bandyopadhyay, T. K., Scr. Mater. 44, 25972603 (2001).
13. Cheng, L., Brakman, C. M., Korevaar, B. M. and Mittemeijer, E. J., Metall. Trans. A 19, 24152426 (1988).
14. Morra, P. V., Böttger, A. J. and Mittemeijer, E. J., J. Therm. Anal. Calorim. 64, 905914 (2001).
15. Dudova, N. and Kaibyshev, R., ISIJ International 51, 826831 (2011).
16. Adler, P. and DeIasi, R., Metall. Mater. Trans. A 8, 11851190 (1977).
17. Smith, G. W., Thermochimica Acta 313, 2736 (1998).
18. Jackson, M. P., Starink, M. J. and Reed, R. C., Mater. Sci. Eng., A 264, 2638 (1999).
19. Petch, N. J., Acta Crystallogr. 6, 9696 (1953).
20. Shtansky, D. V., Nakai, K. and Ohmori, Y., Acta Mater. 48, 969983 (2000).
21. Hillert, M. and Ågren, J., Scr. Mater. 50, 697699 (2004).
22. Shtansky, D. V. and Inden, G., Acta Mater. 45, 28612878 (1997).
23. Bjärbo, A. and Hättestrand, M., Metall. Mater. Trans. A 32, 1927 (2001).
24. Bhadeshia, H. K. D. H., in Encyclopedia of Materials: Science and Technology (Second Edition) (Elsevier, Oxford, 2001), pp. 52035206.
25. Bain, E. C. and Paxton, H. W., Alloying elements in steel. (American Society for Metals, 1961).
26. Kissinger, H. E., Journal of Research of the National Bureau of Standards 57, 217 (1956).
27. Bhattacharyya, S. K. and Russell, K. C., Metall. Trans. 3, 21952199 (1972).
28. Meisel, L. V. and Cote, P. J., Acta Metall. 31, 10531059 (1983).
29. Elder, J. P., J. Therm Anal. 30, 657669 (1985).
30. Budrugeac, P. and Segal, E., J. Therm. Anal. Calorim. 88, 703707 (2007).
31. Svoboda, R. and Málek, J., J. Therm. Anal. Calorim. 115, 17 (2014).
32. Huang, C., Mei, X., Cheng, Y., Li, Y. and Zhu, X., J. Therm. Anal. Calorim. 116, 11531157 (2014).
33. Sugihara, M., Yamazaki, Y., Takaki, S., Abiko, K. and Iijima, Y., Mater. Trans. 41, 8790 (2000).
34. Braun, R. and Feller-Kniepmeier, M., Phys. Status Solidi A 90, 553561 (1985).


A Differential Scanning Calorimetric Study of Carbide Transition in 10Cr Tempered Martensitic Steels

  • H.C. Wang (a1)


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed