Hostname: page-component-76fb5796d-skm99 Total loading time: 0 Render date: 2024-04-27T03:01:43.180Z Has data issue: false hasContentIssue false

Dielectric Relaxation Spectroscopic Measurements on a Novel Electroactive Polyimide

Published online by Cambridge University Press:  10 February 2011

Saadi Abdul Jawad
Affiliation:
Department of Physics, The Hashemite University, P. O. Box 1504591, Zarqa, Jordan
Abdalla Alnajjar
Affiliation:
Department of Physics, Sharja University, Sharja, UAE
Mamoun M. Bader
Affiliation:
Department of Chemistry, Pennsylvania State University, Hazleton, PA 18201
Get access

Abstract

AC electrical behavior of a novel aromatic electro-optic polyimide was investigated in the temperature range 25 °C to 300 °C and a frequency range from 1 Hz to 106 Hz. Three electrical quantities: impedance, permittivity and electric modulus are reported. The dependence of imaginary and real components of these quantities on temperature and frequency are discussed. The experimental results show that the polymer has high thermal stability below 200 °C, where the resistivity, dielectric constant and permittivity are nearly temperature-independent indicating highly rigid structure. Above this temperature, however, a well-defined broad peak corresponding to a relaxation process was observed for which the activation energy was calculated to be 8.5 Kcal/mole. This relaxation is associated with a restricted local rotational motion of the side chain chromophore.

Type
Research Article
Copyright
Copyright © Materials Research Society 2000

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Yu, L.; Chan, W. K.; Peng, Z.; Gharavi, A., Acm. Chem. Res 1996, 29,13.Google Scholar
2. Moerner, W. E.; Silence, S. M., Chem Rev. 1994, 94,129.Google Scholar
3. Gunter, P.; Huignard, J. P., Photorefractive Materials and their Applications; Springer-Verlag, Berlin, Vols. 1 and 2, 1988.Google Scholar
4. Yarvin, A. Optical Electronics; 4th ed., Har Court Brace, Orlando, FL, 1991.Google Scholar
5. Peng, Z. H.; Bao, Z. N.; Chen, Y. M.; Yu, L. P., J. Am. Chem. Soc. 1994, 116, 6003,Google Scholar
Yu, L. P.; Peng, Z. H.; Plol Mater. Sci. Eng., 1994, 71, 441.,Google Scholar
Chan, W. K; Chen, Y. M; Peng, Z. H.; Yu, L. P., J. Am. Chem. Soc., 1993, 155,11735.,Google Scholar
Sasone, M. J.; Teng, C. C; East, A. J.; Kwiatek, M. S., Opt. Lett, 1993, 18, 1400.Google Scholar
6. Bellucci, F.; Maio, V; Monetta, T.; Nicodemo, L.; Mijovic, J., J. Poly. Sci., Part B: Polymer Phys.,1996, 34,1280.Google Scholar
7. Foumier, J.; Williams, G.; Duch, C.: Aldredge, G. A., Macromolecules, 1996, 29, 7097.Google Scholar
8. Koehler, W.; Robello, D. R.; Dao, P.T.; Willand, C.,S.; Williams, D.J., Macromolectles, 1992, 24, 5589.Google Scholar
9. Teroka, I.; Jungbauer, D.; Reck, B.; Yoon, D.Y.; Twieg, R.; Wilson, C. G. J. Appi. Phys., 1991, 69, 2568.Google Scholar
10. Yu, D.; Gharavi, A.; Yu, L., J. Amer. Chem Soc., 1995,117,11680.Google Scholar
11. Macedo, P. B.; Bose, R.; Provenzano, V.; Litovitz, T. A., Amorphous Materials: Douglas, R.W. and Ellis, B. (Eds.), Interscience, London, 1972.Google Scholar
12. Hodge, I. M; Ingram, M. D; West, A. R J. Electroamal.Chem., 1975, 58, 429.Google Scholar
13. Starkweather, H. W.; Avakian, P. J Poly. Sci. Part B: Poly. Phys., 1992, 30, 637.Google Scholar
14. See for example: Handbook of Conductive Polymers, Skotheim, T.A (ed.), Marcel-Dekker Inc. Basel, 1989., Impedance Spectroscopy, Macdonald R (ed.), Wiley, New-York, 1987.Google Scholar
15. Issa, M. A J. Mat. Sci, 1992, 27, 3685.Google Scholar
16. Boyd, R. H.; Porter, G. H., J. Poly.Sci., A-2, 1972, 10, 647.Google Scholar
17. Abdul-Jawad, S; AI-Haj-Mohammad, M.S, Mat. Let, 1992, 13, 312.Google Scholar
18. Green, D.I; Davies, G.R; Ward, I. M; AI-Haj-Mohammad, M.H; Abdul-Jawad, S, Pol. Adv Tech., 1990,1,41.Google Scholar