Skip to main content Accessibility help

Dielectric Morphology and RRAM Resistive Switching Characteristics

  • G. Bersuker (a1), B. Butcher (a1), D. C. Gilmer (a1), L. Larcher (a2), A. Padovani (a2), R. Geer (a3) and P. D. Kirsch (a1)...


The connection between the bi-polar hafnia-based resistive-RAM (RRAM) operational characteristics and dielectric structural properties is considered. Specifically, the atomic-level description of RRAM, which operations involve the repeatable rupture/recreation of a localized conductive path, reveals that its performance is determined by the outcome of the initial forming process defining the structural characteristics of the conductive filament and distribution of the oxygen ions released from the filament region. The post-forming ions spatial distribution in the cell is found to be linked to a degree of dielectric oxygen deficiency, which may either assist or suppress the resistive switching processes.


Corresponding author


Hide All
1. LU, C.-Y., Journal of Nanoscience and Nanotechnology, 12, n10, 76047618, (2012).
2. WASER, R.; AONO, M., Nature of Materials, 6, 833840, (2007).
3. CHEN, A.Ionic Memory Technology”, Solid State Electrochemistry II; Electrodes, Interfaces and Ceramic Membranes. ,In: KHARTON, V. V, (Wiley, 2011), Cap. 1, p. 126.
4. BERSUKER, G. et al. . Metal oxide resistive memory switching mechanism based on conductive filament properties. Journal or Applied Physics, v. 110, n. 12, p. 124518, (2011).
5. BERSUKER, G. et al. ., IEDM, Tech. Dig., 19.6.1–19.6.4, (2010).
6. BUTCHER, B. et al. ., IEDM, Tech. Dig., (2014).
7. BERSUKER, G. et al. ., ESSDERC, (2014).
8. YOUNG-FISHER, K. G. et al. ., IEEE - Electron Device Letters, 34, 750752, (2013).
9. VANDELLI, L. et al. ., IEEE-Transactions on Electron Devices, 58, n9, 28782887, (2011).
10. MCKENNA, K.; SHLUGER, A., Applied Phsics Letters, 95, n22, 222111, (2009).
11. IGLESIAS, V. et al. ., Applied Physics Letters, 97, n26, 262906, (2010).
12. LANZA, M. et al. ., Applied Physics Letters, 101, 193502, (2012).
13. LARCHER, L. et al. ., IEDM, Tech. Dig., (2012).
14. ZHENG, J. X. et al. ., Phys. Rev. B, 75, 104112–1, (2007).
15. VANDELLI, L. et al. ., IEEE Transactions on Electron Devices, 60, n5, 17541762, (2013).
16. MCKENNA, K. P., Modelling Simulation Mater. Sci. Eng., (2014).
17. BUTCHER, B. et al. ., IEEE - International Memory Workshop (IMW), Monterey, (2013).
18. BUTCHER, B. Ph.D. Thesis. STATE UNIVERSITY OF NEW YORK AT ALBANY. [S.l.], 3602057, (2013).
19. SOWINSKA, M. et al. ., Applied Phsyics Letters, 100, 233509, (2012).
20. KOVESHNIKOV, S. et al. ., IEDM, Tech. Dig., (2012).
21. SYU, Y.-E. et al. ., Electron Device letters, IEEE, 34, n7, 864866, (2013).
22. SHIMENG, Y.; XIMENG, G.; WONG, H.-S. P., IEEE, International Electron Devices meeting (IEDM), 26.1.1–26.1.4, (2012).
23. BRADLEY, S. R.; MCKENNA, K. P.; SHLUGER, A. L., Microelec. Eng., 109, 346, (2013).


Dielectric Morphology and RRAM Resistive Switching Characteristics

  • G. Bersuker (a1), B. Butcher (a1), D. C. Gilmer (a1), L. Larcher (a2), A. Padovani (a2), R. Geer (a3) and P. D. Kirsch (a1)...


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed