Hostname: page-component-76fb5796d-22dnz Total loading time: 0 Render date: 2024-04-25T14:09:11.535Z Has data issue: false hasContentIssue false

Diagnostics of VHF Plasma Deposition

Published online by Cambridge University Press:  21 February 2011

J. Kuske
Affiliation:
Institut für Festkörperelektronik, Technische Universität Dresden, Monmsen-straβe 13, 0–8027 Dresden, F.R. Germany
U. Stephan
Affiliation:
Institut für Festkörperelektronik, Technische Universität Dresden, Monmsen-straβe 13, 0–8027 Dresden, F.R. Germany
K. Schade
Affiliation:
Institut für Festkörperelektronik, Technische Universität Dresden, Monmsen-straβe 13, 0–8027 Dresden, F.R. Germany
W. Fuhs
Affiliation:
Institut für Festkörperelektronik, Technische Universität Dresden, Monmsen-straβe 13, 0–8027 Dresden, F.R. Germany
Get access

Abstract

The use of Very High Frequency (VHF) glow discharge for the deposition of amorphous silicon films is one approach to influencing the deposition conditions.

For the experiments a capacitatively-coupled parallel plate reactor with two aluminium electrodes of 125 mm in diameter is used. The VHF is generated by means of an all-solid state amplifier which has a frequency response ranging from 250 kHz to 150 MHz. Experiments with an nitrogen discharge within the range from 5 to 150 MHz are an principle in agreement with the results in the literature. The results show, that the frequency dependence of the discharge strongly depends on the design and the external electrical connection of the VHF-reactor. In the examined range of frequency resonances appear, which are probably responsible for the maximum of the deposition rate. These resonances are not essentially resultant from changes in the physics of the discharge but a result of the reactor construction and the external electrical connection. Possibilities which influence this frequencies of resonance will be discussed.

Results for an electrical network model will be discussed in the comparison with different reactors and the optimization of the behaviour of the deposition process.

Type
Research Article
Copyright
Copyright © Materials Research Society 1992

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Curtins, H., Wyrsch, N., Favre, M., Sah, A.V., Plasma Chemistry and Plasma Processing 7, 267 (1987).Google Scholar
2. Moisan, M., Barbeau, C., Claude, R., Ferreira, C.M., Margot, J., Paraszc-zak, J., , A.B., Sauvé, G., Wertheimer, M.R., J. Vac. Sci. Technol. B9 (1), 825 (1991).CrossRefGoogle Scholar
3. Matsuda, A., Kaga, T., Tanaka, H., Jpn. J. Appl. Phys. 23 (8), L567–L569 (1984).CrossRefGoogle Scholar
4. Curtins, H., Wyrsch, N., Favre, M., Sah, A.V., Plasma Chemistry and Plasma Processing 7, 267 (1987).Google Scholar
5. Oda, S., Yasukawa, M., Journal of Non-Crystalline Solids 137&138, 677680 (1991).Google Scholar
6. Oda, S., Noda, J., Matsumura, M., Jpn. J. Appl. Phys 29, 18891895 (1990).Google Scholar
7. Howling, A.A., Hollenstein, Ch., Dorier, J.-L., Paris, P., Favre, M., Proceedings of the 10th European Photovoltaic Solar Energy Conference and Exhibition. 8–12. April 1991, Lisbon, Portugal.Google Scholar
8. Fischer, D., Keppner, H., Finger, F., Prasad, K., Sah, A., Proceedings of the 10th European Photovoltaic Solar Energy Conference and Exhibition. 8–12. April 1991, Lisbon, Portugal.Google Scholar
9. Keppner, H., Chabloz, P., Fischer, D., Mettler, A., Tscharner, R., Sah, A., Proceedings of the 10th European Photovoltaic Solar Energy Conference and Exhibition. 8–12. April 1991, Lisbon, Portugal.Google Scholar
10. Hale, D.H., Phys. Rev. 73 (9), 10461052 (1948).Google Scholar
11. Goto, H., Sasaki, M., Ohmi, T., Solid State Technol. (2), 1316 (1991).Google Scholar
12. Beneking, C., J. Appl. Phys. 68 (9), 44614473 (1990).CrossRefGoogle Scholar