Hostname: page-component-76fb5796d-wq484 Total loading time: 0 Render date: 2024-04-26T15:25:33.850Z Has data issue: false hasContentIssue false

DFT Study of the Monocyclic and Bicyclic Ring Geometries of C20

Published online by Cambridge University Press:  10 February 2011

Zhiqiang Wang
Affiliation:
Materials Directorate, Wright Laboratory, WL/MLPJ, Wright-Patterson Air Force Base, Ohio 45433-7702
Paul Day
Affiliation:
Materials Directorate, Wright Laboratory, WL/MLPJ, Wright-Patterson Air Force Base, Ohio 45433-7702
Ruth Pachter
Affiliation:
Materials Directorate, Wright Laboratory, WL/MLPJ, Wright-Patterson Air Force Base, Ohio 45433-7702
Get access

Abstract

The monocyclic and bicyclic ring geometries of C20 are optimized using both the local density functional approximation (LDA) and gradient-corrected density functional theory (BLYP). The energy of the bicyclic ring is found to be higher than that of the monocyclic ring in both LDA and BLYP calculations. The BLYP results confirm the previous single point calculation based on Hartree-Fock geometries[1], which is in favor of the monocyclic ring geometry, while the LDA results still favor the cage geometry. LDA frequencies of both ring geometries are also presented.

Type
Research Article
Copyright
Copyright © Materials Research Society 1996

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1] Raghavachari, K., Strout, D. L., Odom, G. K., Scuseria, G. E., Pople, J.A., Johnson, B.G. and Gill, P.M.W., Chem. Phys. Lett. 214 (1993) 357.Google Scholar
[2] Achiba, Y., Nakagawa, T., Matusui, Y., Suzuki, S., Shiromaru, H., Yamauchi, K., Nishiyama, K., Kainosho, M., Hoshi, H., Maruyama, Y., and Mitani, T., Chem. Letters, 7 (1991) 98.Google Scholar
[3] Blau, W., Byrne, H., Cardin, D., Dennis, T., Hare, J., Kroto, H., and Taylor, R., Phys. Rev. Letters 67 (1991) 1423; F. Henari, J. Callaghan, H. Stiel, W. Blau, and D. Cardin, Chem. Phys. Letters, 199 (1992) 144.Google Scholar
[4] von Helden, G., Hsu, M. T., Gotts, N.G., Kemper, P.K., and Bowers, M.T., Chem. Phys. Lett., 204 (1993) 15; H. Handschuh, G. Gantefor, B. Kessler, P. S. Bechthold, and W. Ebhardt, Phys. Rev. Lett., 74 (1995) 1095.Google Scholar
[5] Taylor, P. R., Bylaska, E., Weare, J.H., and Kawai, R., Chem. Phys. Lett., 235 (1995) 558.Google Scholar
[6] Parasuk, V. and Almlof, J., Chem. Phys. Lett., 184 (1991) 187.Google Scholar
[7] Grossman, J., Mitas, L., and Raghavachari, K., Phys. Rev. Lett., 75 (1995) 3870.Google Scholar
[8] Wang, Z., Day, P., and Pachter, R., Chem. Phys. Lett., (in press).Google Scholar
[9] Delley, B., J. Chem. Phys. 92 (1990) 508. DMol is distributed by Biosym Technologies, Inc. at San Diego, CA.Google Scholar
[10] Vosko, S. J., Wilk, L., and Nusair, M., Can. J. Phys., 58 (1980) 1200.Google Scholar
[11] Becke, A. D., J. Chem. Phys., 88 (1988) 2547.Google Scholar
[12] Lee, C., Yang, W., Parr, R. G., Phys. Rev. B 37 (1988) 786.Google Scholar
[13] Schmidt, M.W., Baldridge, K.K., Boatz, J.A., Elbert, S.T., Gordon, M.S., Jensen, J.J., Koseki, S., Matsunaga, N., Nguyen, K.A., Su, S., Windus, T.L., Dupuis, M., Montgomery, J.A., J. Comp. Chem., 14 (1993) 1347.Google Scholar
[14] Wang, Z., Day, P., and Pachter, R., Chem. Phys. Lett., 237 (1995) 45.Google Scholar
[15] Johnson, B. G., Gill, P. M. W., and Pople, J. A., J. Chem. Phys. 98 (1993) 5612.Google Scholar