Skip to main content Accessibility help

Device Characteristics of a Poly-Silicon Thin Film Transistor Fabricated by Milc at Low Temperature

  • Seok-Woon Lee (a1), Byung-IL Lee (a2), Tae-Hyung Ihn (a2), Tae-Kyung Kim (a1), Young-Tae Kang (a1) and Seung-Ki Joo (a2)...


High performance poly-Si thin film transistors were fabricated by using a new crystallization method, Metal-Induced Lateral Crystallization (MILC). The process temperature was kept below 500°C throughout the fabrication. After the gate definition, thin nickel films were deposited on top of the TFT's without an additional mask, and with a one-step annealing at 500°C, the activation of the dopants in source/drain/gate a-Si films was achieved simultaneously with the crystallization of the a-Si films in the channel area. Even without a post-hydrogenation passivation, mobilities of the MILC TFT's were measured to be as high as 120cm2/Vs and 90cm2/Vs for n-channel and p-channel, respectively. These values are much higher than those of the poly-Si TFT's fabricated by conventional solid-phase crystallization at around 6001C.



Hide All
1 Nakazawa, K., J. Appl. Phys. 69(3), 1703, 1991.
2 King, T. J. and Saraswat, K. C., IEEE Electron Device Lett. 13(6), 309, 1992.
3 Aoyama, T., Kawachi, G., Konishi, N., Suzuki, T., Okajima, Y., and Miyata, K., J. Electrochem. Soc. 136(4), 1169, 1989.
4 Little, T. W., Takahara, K., Koike, H., Nakazawa, T., Yudasaka, I., and Ohshima, H., Jpn. J. Appl. Phys. 30(12B), 3724, 1991.
5 Kuriyama, H., Kiyama, S., Noguchi, S., Kuwahara, T., Ishida, S., Nohda, T., Sano, K., Iwata, H., Tsuda, S., and Nakano, S., IEDM 1991 Tech. Dig., 563, 1991.
6 Ottaviani, G., Sigurd, D., Marrello, V., Mayer, H. W., and McCaldin, J. O., J. Appl. Phys. 45(4), 1730, 1974.
7 Konno, T. J. and Sinclair, R., Mat. Sci. Eng. A179/A180, 426, 1994.
8 Hultman, L., Robertsson, A., Hentzell, H. T. G., and Engstrom, I., J. Appl. Phys. 62, 3647, 1987.
9 Radnoczi, G., Robertsson, A., Hentzell, H. T. G., Gong, S. F., and Hasan, M. -A., J. Appl. Phys. 69(9), 6394, 1991.
10 Gong, S. F., Hentzell, H. T. G., Robertsson, A. E., Hyltman, L., Hornstrom, S. -E., and Radnoczi, G., H. Appl. Phys. 62, 3726, 1987.
11 Nygren, E., Pogany, A. P., Short, K. T., Williams, H. S., Elliman, R. G., and Posate, H. M., Appl. Phys. Lett. 52, 439, 1988.
12 Lee, S. W., Jeon, Y. C., and Joo, S. -K., Appl. Phys. Lett., 66(13), 1671, 1995.
13 Ihn, T. H. and Joo, S. -K., 2nd Pacific Rim Inter. Conf. on Adv. Mat. and Proc., 1333, 1995.
14 Lee, S. W. and Joo, S. -K., Digest of AMLCD '95, 113, 1995.
15 Harbeke, G. and Jasrzebski, L., J. Electrochem. Soc., 137, 696, 1990.
16 Lee, S. W., Jeon, Y. C., and Joo, S. -K., Mater. Res. Soc. Proc. 321, 707, 1993.
17 Hayzelden, C. and Batstone, J. L., J. AppI. Phys. 73(12), 8279, 1993.
18 Lee, S. W. and Joo, S. -K., IEEE Electron Dev. Lett., 17(4), 160, 1996.
19 Crowder, B. L. and Morehead, F. F., Appl. Phys. Lett., 14, 313, 1969.
20 Lee, J. Y., Han, C. H., and Kim, C. K., IEDM 1994 Tech. Dig., 523, 1994.


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed