Hostname: page-component-7c8c6479df-nwzlb Total loading time: 0 Render date: 2024-03-19T03:58:43.367Z Has data issue: false hasContentIssue false

Development of Variable Temperature Scanning Microwave Microscope for High Throughput Materials Characterization

Published online by Cambridge University Press:  26 February 2011

Noriaki Okazaki
Affiliation:
okazaki.noriaki@nims.go.jp, National Institute for Materials Science, 1-1 Namiki, Tsukuba, Ibaraki, 3050044, Japan
Sohei Okazaki
Affiliation:
okazaki@chem.s.u-tokyo.ac.jp
Ryota Takahashi
Affiliation:
takahashi@oxide.msl.titech.ac.jp
Makoto Murakami
Affiliation:
murakami@umd.edu
Parhat Ahmet
Affiliation:
parhat.ahmet@nims.go.jp
Nobuyuki Kakiuchi
Affiliation:
kakiuchi@nissanchem.co.jp
Hitoshi Furusho
Affiliation:
furusyouh@nissanchem.co.jp
Taito Nishino
Affiliation:
nishino@nissanchem.co.jp
Yutaka Furubayashi
Affiliation:
furubayashi@ksp.or.jp
Tomoteru Fukumura
Affiliation:
fukumura@imr.tohoku.ac.jp
Yuji Matsumoto
Affiliation:
matsumoto@oxide.msl.titech.ac.jp
Masashi Kawasaki
Affiliation:
kawasaki@imr.tohoku.ac.jp
Toyohiro Chikyow
Affiliation:
chikyo.toyohiro@nims.go.jp
Hideomi Koinuma
Affiliation:
koinuma.hideomi@nims.go.jp
Tetsuya Hasegawa
Affiliation:
hasegawa@chem.s.u-tokyo.ac.jp
Get access

Abstract

We developed a variable-temperature scanning microwave microscope (VT-SμM) that can perform high-throughput materials characterization in the temperature range between 4K and room temperature. As a sensor probe we used a high-Q coaxial cavity resonator, which was mounted on the low-temperature stage to allow variable-temperature measurements. We carried out systematic studies on the thermal degradation of the conducting polymers using the combinatorial libraries of polyaniline and polythiophene thin films, which showed rapid decrease of conductivity above 300C and 250C, respectively. The low-temperature performance of the VT-SμM was demonstrated by the measurement of composition-spread Nd1-xSrxMnO3 thin film, for which we succeeded in detecting the clear metal-insulator transition at 100K. We also propose a simple and easy method for the quantitative analysis of conductive thin films, by using the standard composition-spread thin films of Ti1-xNbxO2.

Type
Research Article
Copyright
Copyright © Materials Research Society 2006

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Gao, C. and Xiang, X.-D., Rev. Sci. Instrum. 69, 3846 (1998).Google Scholar
2. Yoo, Y.-K., Duewer, F., Yang, H., Yi, D., Li, J. W. and Xiang, X.-D., Nature 406, 704708 (2000).Google Scholar
3. Okazaki, N., Odagawa, H., Cho, Y., Nagamura, T., Komiyama, D., Koida, T., Minami, H., Ahmet, P., Fukumura, T., Matsumoto, Y., Kawasaki, M., Chikyow, T., Koinuma, H. and Hasegawa, T., Appl. Surf. Sci. 189, 222226 (2002).Google Scholar
4. Okazaki, N., Ahmet, P., Chikyow, T., Odagawa, H., Cho, Y., Fukumura, T., Kawasaki, M., Ohtani, M., Koinuma, H. and Hasegawa, T. in Combinatorial and Artificial Intelligence Methods in Materials Science edited by Takeuchi, I., Newsam, J. M., Wille, L. T., Koinuma, H., Amis, E. J. (Mat. Res. Soc. Symp. Proc. 700, Boston, MA, 2002) pp.119124.Google Scholar
5. Okazaki, S., Okazaki, N., Sugaya, H., Zhao, X. R., Hasegawa, K., Ahmet, P., Chikyow, T., Nishimura, J., Fukumura, T., Kawasaki, M., Murakami, M., Mastumoto, Y., Koinuma, H. and Hasegawa, T. in Combinatorial and Artificial Intelligence Methods in Materials Science II, edited by Potyrailo, R. A., Karim, A., Wang, Q. and Chikyow, T., (Mat. Res. Soc. Symp. Proc. 804, Boston, MA, 2004) pp.249254.Google Scholar
6. Hasegawa, K., Ahmet, P., Okazaki, N., Hasegawa, T., Fujimoto, K., Watanabe, M., Chikyow, T. and Koinuma, H., Appl. Surf. Sci. 223, 229232 (2004).Google Scholar
7. Okazaki, N., Okazaki, S., Higuma, H., Miyashita, S., Cho, Y., Fukumura, T., Kawasaki, M., Murakami, M., Matsumoto, Y., Koinuma, H. and Hasegawa, T., Appl. Surf. Sci. 223, 196199 (2004).Google Scholar
8. Okazaki, S., Okazaki, N., Zhao, X. R., Sugaya, H., Yaginuma, S., Takahashi, R., Murakami, M., Mastumoto, Y., Chikyow, T., Koinuma, H. and Hasegawa, T., Appl. Surf. Sci. (in press).Google Scholar
9. Ariel Technologies, Inc. Model EMP 2002 Instruction Manual (2002).Google Scholar
10. Morooka, T., Tanaka, K., Odawara, A., Nakayama, S., Nagata, A., Ikeda, M., and Chinone, K., Phys. C Supercond. Appl. 335, 157163 (2000).Google Scholar
11. Kim, B.H., Park, D.H., Joo, J., Yu, S.G. and Lee, S.H., Synth. Met. 150, 279284 (2005).Google Scholar
12. Wang, G., Hirasa, T., Moses, D. and Heeger, A. J., Synth. Met. 146, 127132 (2004).Google Scholar
13. Skotheim, T. A., Elsenbaumer, R. L. and Reynolds, J. R., Handbook of Conducting polymers, 2nd ed. (Marcel Dekker, New York, 1998) p.1015.Google Scholar
14. Vil¡cáková, J., Paligová, M., Omastová, M., Sáha, P., and Quadrat, O., Synth. Met. 146, 121126 (2004).Google Scholar
15. Skotheim, T. A., Elsenbaumer, R. L. and Reynolds, J. R., Handbook of Conducting polymers, 2nd ed. (Marcel Dekker, New York, 1998) p.494.Google Scholar
16. Angelopoulos, M., Patel, N. and Shaw, J. M., Mater. Res. Soc. Symp. Proc. 328, 173 (1944).Google Scholar
17. Angelopoulos, M., Patel, N., Shaw, J. M., Labianca, N. C., and Rishton, S., J. Vac. Sci. Technol. Bll 6, 2794 (1993).Google Scholar
18. Chen, S.A. and Hwang, G.W., J. Am. Chem. Soc. 117,10055(1995).Google Scholar
19. Kajimoto, R., Yoshizawa, H., Kawano, H., Kuwahara, H., Tokura, Y., Ohyama, K. and Ohashi, M., Phys. Rev. B 60, 9506 (1999).Google Scholar
20. Fukumura, T., Ohtani, M., Kawasaki, M., Okimoto, Y., Kageyama, T. Koida, T., Hasegawa, T., Tokura, Y. and Koinuma, H., Appl. Phys. Lett. 77, 3426 (2000).Google Scholar
21. Koinuma, H. and Takeuchi, I., Nature Materials 3, 429 (2004).Google Scholar
22. Sugaya, H., Okazaki, S., Hasegawa, T., Okazaki, N., Nishimura, J., Fukumura, T., Kawasaki, M. and Koinuma, H., Appl. Surf. Sci. 223, 68 (2004).Google Scholar
23. Lee, J. H., Hyun, S. and Char, K., Rev. Sci. Instrum. 72, 1425 (2001).Google Scholar
24. Gao, C., Hu, B., Zhang, P., Huang, M. and Liu, W., Appl. Phys. Lett. 84, 4607 (2004).Google Scholar
25. Furubayashi, Y., Hitosugi, T., Yamamoto, Y., Inaba, K., Kinoda, G., Hirose, Y., Shimada, T. and Hasegawa, T., Appl. Phys. Lett. 86, 252101 (2005).Google Scholar