Hostname: page-component-848d4c4894-nr4z6 Total loading time: 0 Render date: 2024-05-11T12:45:16.731Z Has data issue: false hasContentIssue false

Development of Anisotropic GaAs (001) Surface Morphology During Molecular Beam Epitaxial Growth

Published online by Cambridge University Press:  15 February 2011

Allan J. Pidduck
Affiliation:
Defence Research Agency, St. Andrews Road, Malvern, Worcs. WR14 3PS, UK.
G.W. Smith
Affiliation:
Defence Research Agency, St. Andrews Road, Malvern, Worcs. WR14 3PS, UK.
A.M. Keir
Affiliation:
Defence Research Agency, St. Andrews Road, Malvern, Worcs. WR14 3PS, UK.
C.R. Whitehouse
Affiliation:
Department of Electrical and Electronic Engineering, Sheffield University, Sheffield, UK.
Get access

Abstract

We have studied the development of a microscopically ridged [110] Morphology during (001) GaAs Molecular beam epitaxy, as a function of layer thickness and growth temperature. The ridge slopes are consistent with the [110] separation required to incorporate a majority of adatoms by step-flow growth. Thus step-flow can be a dominant growth mode even on nominally on-axis (singular) substrates. With increasing epilayer thickness, the ridge slopes, and surface step density, remain approximately constant, while the ridge spacings, and therefore roughness amplitude, increase steadily.

Type
Research Article
Copyright
Copyright © Materials Research Society 1994

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Briones, F., Golmayo, D., Gonzales, L. and Miguel, J.L.de, Japan J. Appl. Phys. 24, L478 (1985).CrossRefGoogle Scholar
2. Isu, T., Watanabe, A., Hata, M., and Katayama, Y., Japan J. Appl. Phys. 27, L2259 (1988).CrossRefGoogle Scholar
3. Smith, G.W., Pidduck, A.J., Whitehouse, C.R., Glasper, J.L., Keir, A.M. and Pickering, C., Appl. Phys. Lett. 59, 3282 (1991).CrossRefGoogle Scholar
4. Baeta Moreira, M.V., Py, M.A. and Tuncel, E., J. Crystal Growth 112, 14 (1991).Google Scholar
5. Fatt, Y.S., J. Appl. Phys. 71, 158 (1992).Google Scholar
6. Smith, G.W., Pidduck, A.J., Whitehouse, C.R., Glasper, J.L. & Spowart, J., J. Cryst. Growth 127, 966 (1993).Google Scholar
7. Burton, W.K., Cabrera, N. and Franf, F.C., Proc. Roy. Soc. London Ser. A, A243, 299 (1951).Google Scholar
8. Neave, J.H., Joyce, B.A., Dobson, P.J. and Norton, N., Appl. Phys. A 31, 1 (1983).Google Scholar
9. Neave, J.H., Joyce, B.A. and Dobson, P.J. and Norton, N., Appl. Phys. A34, 179 (1984).CrossRefGoogle Scholar
10. Johnson, M.D., Orme, C., Hunt, A.W., Graff, D., Sudijono, J., Sander, L.M. and Orr, B.G., preprint.Google Scholar
11. Schwoebel, R.L., J. Appl. Phys. 40, 614 (1969).Google Scholar
12. Neave, J.H., Dobson, P.J., Joyce, B.A. and Zhang, J., Appl. Phys. Lett. 47, 100 (1985).Google Scholar
13. Ohta, K., Kojima, T. and Nakagawa, T., J.Crystal Growth 95, 71 (1989).Google Scholar
14. Shitara, T., Zhang, J., Neave, J.H. and Joyce, B.A., J. Appl. Phys. 71, 4299 (1992).Google Scholar