Hostname: page-component-77c89778f8-m42fx Total loading time: 0 Render date: 2024-07-19T06:05:53.490Z Has data issue: false hasContentIssue false

Detonation Chemistry Of Glycidyl Azide Polymer

Published online by Cambridge University Press:  10 February 2011

Ping Ling
Affiliation:
Chemistry Department, University of Utah, Salt Lake City, UT 84112, wight@chemistry.utah.edu
Jill Sakata
Affiliation:
Chemistry Department, University of Utah, Salt Lake City, UT 84112, wight@chemistry.utah.edu
Charles A. Wight
Affiliation:
Chemistry Department, University of Utah, Salt Lake City, UT 84112, wight@chemistry.utah.edu
Get access

Abstract

The initial step of chemical reaction initiated by laser-generated shock waves has been observed in glycidyl azide polymer (GAP) in condensed phase. Shocks are generated by pulsed laser vaporization of thin aluminum films and launched into adjacent films of GAP at 77 K. Comparison of FIIR spectra obtained before and after shock passage shows that initial reaction involves elimination of molecular nitrogen from the azide functional groups of the polymer. The shock arrival time has been measured by a velocity interferometer as a function of thickness of GAP and laser fluence. The shock pressure has been calculated by using a universal liquid state Hugoniot. A simple model is proposed to calculate shock velocity and pressure as a function of laser fluence. The results are in agreement with experimental data.

Type
Research Article
Copyright
Copyright © Materials Research Society 1996

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Wight, C. A., Botcher, T. R., J. Am. Chem. Soc. 114, 8803 (1992).Google Scholar
2. Brill, T. B., Patil, D. G., Duterque, J., and Lengelle, G., Combust. Flame 95, 183 (1993).Google Scholar
3. Botcher, T. R., Wight, C.A., J. Phys. Chem. 97, 9149 (1993).Google Scholar
4. Botcher, T. R., Wight, C.A., J. Phys. Chem. 98, 5441 (1994).Google Scholar
5. Botcher, T. R., Beardall, D., Wight, C.A., Fan, L., and Burkey, T. J., J. Phys. Chem. in pressGoogle Scholar
6. Peyrand, M., Odiot, S., Oran, E., Boris, J., and Schnur, J., Phys. Rev. B 33, 250 (1986).Google Scholar
7. Elert, M. L., Deaven, D. M., Brenner, D. W., and White, C. T., Phys. Rev. B 39, 1435 (1989).Google Scholar
8. Coffey, C. S. and Toton, E. T., J. Chem. Phys. 76, 949 (1982)Google Scholar
9. Trevino, S. F. and Tasi, D. H., J. Chem. Phys. 81, 348 (1984)Google Scholar
10. Zerilli, F. J. and Toton, E. T., Phys. Rev. B 29, 5891 (1984)Google Scholar
11. Dlott, D. D. and Fayer, M. D., J. Chem. Phys. 92, 3798 (1990).Google Scholar
12. Tokmakoff, A., Fayer, M. D., and Dlott, D. D., J. Phys. Chem. 97,1901 (1993)Google Scholar
13. Hare, D.E. and Dlott, D.D., Appl. Phys. lett. 64, 715 (1994)Google Scholar
14. Yang, L. C., J. AppI. Phys. 45, 2601 (1974).Google Scholar
15. Shoen, P. E. and Campillo, A. J., Appl. Phys. Lett. 45, 1049 (1984).Google Scholar
16. Lee, I.-Y. S., Hill, J. R., and Dlott, D. D., J. Appl. Phys. 75, 4925 (1994).Google Scholar
17. Yang, L. C. and Menichelli, V. J., Appl. Phys. Lett. 19, 473 (1971)Google Scholar
18. Sakata, J. and Wight, C. A., J.Phys. Chem. 99, 6584 (1995).Google Scholar
19. Johnson, J. N. and Barker, L. M., J. Appl. Phys. 40, 4321 (1969).Google Scholar
20. Lee, I.-Y. S., Hill, J. R., Suzuki, H., Dlott, D. D., Baer, B. J., and Chronister, E. L., J. Chem. Phys., in press.Google Scholar
21. CRC Handbook of Chemistry and Physics, 74th ed. (CRC, Boca Raton, FL 1993).Google Scholar
22. Woolfolf, R. W., Cowperwaite, M., and Shaw, R., Thermochimica Acta 5, 409 (1973).Google Scholar
23. Haas, Y., Eliahu, Y. B., and Welner, S., Combust. Flame 96, 212 (1994).Google Scholar
24. Chen, J. K. and Brill, T. B., Combust. Flame 87, 157 (1991).Google Scholar
25. Oyumi, Y. and Brill, T. B., Combust. Flame 65, 127 (1987)Google Scholar
26. Shaw, R., J. Chem. Phys, 54, 3657 (1971).Google Scholar
27. Cowperthwaite, M. and Shaw, R., J. Chem. Phys. 53, 555 (1970).Google Scholar